Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mating increases Drosophila melanogaster females’ choosiness by reducing olfactory sensitivity to a male pheromone


Females that are highly selective when choosing a mate run the risk of remaining unmated or delaying commencing reproduction. Therefore, low female choosiness would be beneficial when males are rare but it would be maladaptive if males become more frequent. How can females resolve this issue? Polyandry would allow mating-status-dependent choosiness, with virgin females selecting their first mate with little selectivity and becoming choosier thereafter. This plasticity in choosiness would ensure timely acquisition of sperm and enable females to increase offspring quality during later mating. Here, we show that Drosophila melanogaster females display such mating-status-dependent choosiness by becoming more selective once mated and identify the underlying neurohormonal mechanism. Mating releases juvenile hormone, which desensitizes Or47b olfactory neurons to a pheromone produced by males, resulting in increased preference for pheromone-rich males. Besides providing a mechanism to a long-standing evolutionary prediction, these data suggest that intersexual selection in D. melanogaster, and possibly in all polyandrous, sperm-storing species, is mainly the domain of mated females since virgin females are less selective. Juvenile hormone influences behaviour by changing cue responsiveness across insects; the neurohormonal modulation of olfactory neurons uncovered in D. melanogaster provides an explicit mechanism for how this hormone modulates behavioural plasticity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Increased choosiness between virgin and mated state in D. melanogaster females.
Fig. 2: Or47b ORN is necessary for plastic female choosiness and decreases in sensitivity to palmitoleic acid after mating.
Fig. 3: JH reduces Or47b ORN sensitivity.
Fig. 4: Transcriptomic differences between the antennae of virgin and mated females.

Data availability

Raw sequencing reads are available at the National Center for Biotechnology Information Short Read Archive (; accession no. PRJNA694952. All other raw data are available at Dataverse-NL (

Code availability

R scripts and the gene expression analysis code are available on Dataverse-NL.


  1. 1.

    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).

    CAS  Google Scholar 

  2. 2.

    Trivers, R. L. in Sexual Selection and the Descent of Man: The Darwinian Pivot (ed. Campbell, B) 136–179 (AldineTransaction, 1972).

  3. 3.

    De Jong, M. C. M. & Sabelis, M. W. Limits to runaway sexual selection: the wallflower paradox. J. Evol. Biol. 4, 637–655 (1991).

    Google Scholar 

  4. 4.

    Martínez-Ruiz, C. & Knell, R. J. Sexual selection can both increase and decrease extinction probability: reconciling demographic and evolutionary factors. J. Anim. Ecol. 86, 117–127 (2017).

    Google Scholar 

  5. 5.

    Jennisons, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. Camb. Philos. Soc. 75, 21–64 (2000).

    Google Scholar 

  6. 6.

    Kokko, H. & Mappes, J. Sexual selection when fertilization is not guaranteed. Evolution 59, 1876–1885 (2005).

    Google Scholar 

  7. 7.

    Mautz, B. S. & Sakaluk, S. K. The effects of age and previous mating experience on pre- and post-copulatory mate choice in female house crickets (Acheta domesticus L.). J. Insect Behav. 21, 203–212 (2008).

    Google Scholar 

  8. 8.

    Judge, K. A., Tran, K.-C. & Gwynne, D. T. The relative effects of mating status and age on the mating behaviour of female field crickets. Can. J. Zool. 88, 219–223 (2010).

    Google Scholar 

  9. 9.

    King, B. H. & Miller, K. A. Mating status effects on sexual response of males and females in the parasitoid wasp Urolepis rufipes. J. Insect Behav. 31, 144–157 (2018).

    Google Scholar 

  10. 10.

    Tanner, J. C., Garbe, L. M. & Zuk, M. When virginity matters: age and mating status affect female responsiveness in crickets. Anim. Behav. 147, 83–90 (2019).

    Google Scholar 

  11. 11.

    Gromko, M. H. & Markow, T. A. Courtship and remating in field populations of Drosophila. Anim. Behav. 45, 253–262 (1993).

    Google Scholar 

  12. 12.

    Civetta, A. & Ranz, J. M. Genetic factors influencing sperm competition. Front. Genet. 10, 820 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Behrman, E. L., Watson, S. S., O’Brien, K. R., Heschel, M. S. & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J. Evol. Biol. 28, 1691–1704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bateman, P. W., Gilson, L. N. & Ferguson, J. W. H. Male size and sequential mate preference in the cricket Gryllus bimaculatus. Anim. Behav. 61, 631–637 (2001).

    Google Scholar 

  15. 15.

    Lynch, K. S., Rand, A. S., Ryan, M. J. & Wilczynski, W. Plasticity in female mate choice associated with changing reproductive states. Anim. Behav. 69, 689–699 (2005).

    Google Scholar 

  16. 16.

    Billeter, J.-C. & Wolfner, M. F. Chemical cues that guide female reproduction in Drosophila melanogaster. J. Chem. Ecol.44, 750–769 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Liu, H. & Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 9929–9933 (2003).

    CAS  Google Scholar 

  18. 18.

    Yang, al. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Häsemeyer, M., Yapici, N., Heberlein, U. & Dickson, B. J. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511–518 (2009).

    Google Scholar 

  20. 20.

    Rezával, C. et al. Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 22, 1155–1165 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Moshitzky, P. et al. Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch. Insect Biochem. Physiol. 32, 363–374 (1996).

    CAS  Google Scholar 

  22. 22.

    Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 4, e06930 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sugime, Y. et al. Upregulation of juvenile hormone titers in female Drosophila melanogaster through mating experiences and host food occupied by eggs and larvae. Zoolog. Sci. 34, 52–57 (2017).

    CAS  Google Scholar 

  24. 24.

    Santos, C. G., Humann, F. C. & Hartfelder, K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 31, 43–48 (2019).

    Google Scholar 

  25. 25.

    Grillet, M., Dartevelle, L. & Ferveur, J.-F. A Drosophila male pheromone affects female sexual receptivity. Proc. Biol. Sci. 273, 315–323 (2006).

    CAS  Google Scholar 

  26. 26.

    Billeter, J.-C., Atallah, J., Krupp, J. J., Millar, J. G. & Levine, J. D. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461, 987–991 (2009).

    CAS  Google Scholar 

  27. 27.

    Jallon, J. M. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14, 441–478 (1984).

    CAS  Google Scholar 

  28. 28.

    van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007).

    CAS  Google Scholar 

  30. 30.

    Billeter, J.-C. & Levine, J. D. Neurogenetics: sex and the female brain. Curr. Biol. 24, R812–R814 (2014).

    CAS  Google Scholar 

  31. 31.

    Dweck, H. K. M. et al. Pheromones mediating copulation and attraction in Drosophila. Proc. Natl Acad. Sci. USA 112, E2829–E2835 (2015).

    CAS  Google Scholar 

  32. 32.

    Lin, H.-H. et al. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90, 1272–1285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pitts, S., Pelser, E., Meeks, J. & Smith, D. Odorant responses and courtship behaviors influenced by at4 neurons in Drosophila. PLoS ONE 11, e0162761 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    CAS  Google Scholar 

  35. 35.

    Steck, K. et al. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife 7, e31625 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Inagaki, H. K., Panse, K. M. & Anderson, D. J. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84, 806–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hussain, A., Üçpunar, H. K., Zhang, M., Loschek, L. F. & Grunwald Kadow, I. C. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 14, e1002455 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Miura, K., Oda, M., Makita, S. & Chinzei, Y. Characterization of the Drosophila methoprene-tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J. 272, 1169–1178 (2005).

    CAS  Google Scholar 

  40. 40.

    Willis, D. K., Wang, J., Lindholm, J. R., Orth, A. & Goodman, W. G. Microarray analysis of juvenile hormone response in Drosophila melanogaster S2 cells. J. Insect Sci. 10, 66 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yamamoto, R., Bai, H., Dolezal, A. G., Amdam, G. & Tatar, M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 11, 85 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ng, R. et al. Amplification of Drosophila olfactory responses by a DEG/ENaC channel. Neuron 104, 947–959.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sethi, S. et al. Social context enhances hormonal modulation of pheromone detection in Drosophila. Curr. Biol. 29, 3887–3898.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ryner, L. C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996).

    CAS  Google Scholar 

  45. 45.

    Younus, F. et al. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochem. Mol. Biol. 53, 30–43 (2014).

    CAS  Google Scholar 

  46. 46.

    Chertemps, T. et al. A carboxylesterase, esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biol. 10, 56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Anton, S. & Gadenne, C. Effect of juvenile hormone on the central nervous processing of sex pheromone in an insect. Proc. Natl Acad. Sci. USA 96, 5764–5767 (1999).

    CAS  Google Scholar 

  48. 48.

    Guo, W. et al. Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts. PLoS Genet. 16, e1008762 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Scheiner, R. et al. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J. Exp. Biol. 220, 1443–1450 (2017).

    Google Scholar 

  50. 50.

    Huang, Z. Y. et al. Hormonal regulation of behavioural development in the honey bee is based on changes in the rate of juvenile hormone biosynthesis. J. Insect Physiol. 37, 733–741 (1991).

    CAS  Google Scholar 

  51. 51.

    Pankiw, T. & Page, R. E.Jr. Effect of pheromones, hormones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 675–684 (2003).

    CAS  Google Scholar 

  52. 52.

    Jaycox, E. R., Skowronek, W. & Guynn, G. Behavioral changes in worker honey bees (Apis mellifera) induced by injections of a juvenile hormone mimic. Ann. Entomol. Soc. Am. 67, 529–534 (1974).

    Google Scholar 

  53. 53.

    Schenkel, M. A., Pen, I., Beukeboom, L. W. & Billeter, J. C. Making sense of intralocus and interlocus sexual conflict. Ecol. Evol. 8, 13035–13050 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Billeter, J.-C. et al. Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene. Curr. Biol. 16, 1063–1076 (2006).

    CAS  Google Scholar 

  55. 55.

    Billeter, J.-C., Rideout, E. J., Dornan, A. J. & Goodwin, S. F. Control of male sexual behavior in Drosophila by the sex determination pathway. Curr. Biol. 16, 766–776 (2006).

    Google Scholar 

  56. 56.

    Guo, H., Kunwar, K. & Smith, D. Odorant receptor sensitivity modulation in Drosophila. J. Neurosci. 37, 9465–9473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wilson, T. G., DeMoor, S. & Lei, J. Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the methoprene-tolerant27 mutant phenotype. Insect Biochem. Mol. Biol. 33, 1167–1175 (2003).

    CAS  Google Scholar 

  58. 58.

    Ng, R., Lin, H.-H., Wang, J. W. & Su, C.-Y. Electrophysiological recording from Drosophila trichoid sensilla in response to odorants of low volatility. J. Vis. Exp.(125), 56147 (2017).

  59. 59.

    Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS  Google Scholar 

  60. 60.

    Kaissling, K. E. & Thorson, J. Insect olfactory sensilla: structure, chemical and electrical aspect of the functional organization. In Proc. of the Workshop on Neurotransmitter and Hormone Receptors in Insects 261–282 (1980).

  61. 61.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Google Scholar 

  63. 63.

    Yapici, N., Kim, Y.-J., Ribeiro, C. & Dickson, B. J. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33–37 (2008).

    Google Scholar 

  64. 64.

    Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    CAS  Google Scholar 

Download references


We thank J. Wang for critical advice on the experiments and manuscript and M. Maan, T. Verschut and M. Laturney for feedback on the manuscript. This work was supported in part by a grant from the Dutch organization for scientific research (no. ALWOP.611) to J.-C.B., a fellowship by the German Academic Exchange Service (no. 57386478) and a fellowship of the German National Academy of Sciences Leopoldina (no. LPDS 2018-11) to P.K. and grants from the National Institutes of Health to C.-Y.S. (nos. R01DC016466, R01DC015519 and R21DC108912).

Author information




P.K., C.-Y.S. and J.-C.B. designed the study. P.K. and J.-C.B. performed the behavioural experiments, analytical chemistry, RNA-seq and data analysis. Y.Z. performed the single-sensillum recordings. J.A.G. provided the reagents. P.K., Y.Z., C.-Y.S. and J.-C.B. wrote the manuscript with feedback from all authors.

Corresponding author

Correspondence to Jean-Christophe Billeter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Mariana Wolfner, Jen Perry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mating latency is influenced by an interaction between female mating status and male genotype.

Canton-S virgin females were offered a single male (Nl or Tai) for mating. After mating, females were isolated for 24h and offered a new single male (Nl or Tai) for remating. Virgin and mated female mating latency was recorded. PLots display (Mean ± s.e.m). A generalized linear mixed model including mating latency as a response variable, male genotype (Nl vs. Tai), female mating status (virgin, mated) and their interaction as explanatory factors and female ID as a random factor revealed that mating latency is influenced by an interaction between male genotype and mating status (GLMM: p = 0.038). The interaction was then explored using posthoc tests.

Extended Data Fig. 2 Expression of transcripts potentially modulating neuronal sensitivity.

Normalized and log transformed read counts of antennal transcriptomes separated by mating status. Isoforms marked with (*) were differentially expressed between virgin and mated females (Mean ± s.e.m). *: p<0.05; **:p<0.01; ***:p<0.001.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohlmeier, P., Zhang, Y., Gorter, J.A. et al. Mating increases Drosophila melanogaster females’ choosiness by reducing olfactory sensitivity to a male pheromone. Nat Ecol Evol (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing