Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution

Matters Arising to this article was published on 04 July 2022

Abstract

Quantifying speciation times during human evolution is fundamental as it provides a timescale to test for the correlation between key evolutionary transitions and extrinsic factors such as climatic or environmental change. Here, we applied a total evidence dating approach to a hominin phylogeny to estimate divergence times under different topological hypotheses. The time-scaled phylogenies were subsequently used to perform ancestral state reconstructions of body mass and phylogenetic encephalization quotient (PEQ). Our divergence-time estimates are consistent with other recent studies that analysed extant species. We show that the origin of the genus Homo probably occurred between 4.30 and 2.56 million years ago. The ancestral state reconstructions show a general trend towards a smaller body mass before the emergence of Homo, followed by a trend towards a greater body mass. PEQ estimations display a general trend of gradual but accelerating encephalization evolution. The obtained results provide a rigorous temporal framework for human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative topological hypotheses tested in the TED analyses.
Fig. 2: Summary diagram of important palaeoclimatic and hominin evolution events plotted next to the four obtained consensus phylogenies and time divergence estimates.
Fig. 3: Body mass ACSR for each species mapped onto the four consensus time-calibrated phylogenies.
Fig. 4: PEQ ACSR for each species mapped onto the four consensus time-calibrated phylogenies.
Fig. 5: Boxplots of body mass (kg) and PEQ ACSR per node on the basis of a sample of 9,002 time-calibrated posterior trees.

Similar content being viewed by others

Data availability

All data analysed in this study are available in Supplementary Tables 2 and 3 and in a permanent repository at https://doi.org/10.5281/zenodo.4537445. Additionally, the data are available in an open access repository at https://github.com/HansPueschel/Hominin-div-time-evolution.

Code availability

The code and input files are available in a permanent repository at https://doi.org/10.5281/zenodo.4537445. In addition, the code and input files are available in an open access repository at https://github.com/HansPueschel/Hominin-div-time-evolution.

References

  1. Du, A. & Alemseged, Z. Temporal evidence shows Australopithecus sediba is unlikely to be the ancestor of Homo. Sci. Adv. 5, eaav9038 (2019).

  2. Du, A., Rowan, J., Wang, S. C., Wood, B. A. & Alemseged, Z. Statistical estimates of hominin origination and extinction dates: a case study examining the Australopithecus anamensis–afarensis lineage. J. Hum. Evol. 138, 102688 (2020).

  3. Finarelli, J. A. & Clyde, W. C. Reassessing hominoid phylogeny: evaluating congruence in the morphological and temporal data. Paleobiology 30, 614–651 (2004).

    Article  Google Scholar 

  4. DeMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    Article  CAS  Google Scholar 

  5. DeMenocal, P. B. Climate and human evolution. Science 331, 540–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Antón, S. C. & Josh Snodgrass, J. Origins and evolution of genus Homo: new perspectives. Curr. Anthropol. 53, S479–S496 (2012).

    Article  Google Scholar 

  7. Harcourt-Smith, W. E. H. Early hominin diversity and the emergence of the genus Homo. J. Anthropol. Sci. 94, 19–27 (2016).

    PubMed  Google Scholar 

  8. Villmoare, B. Early Homo and the role of the genus in paleoanthropology. Am. J. Phys. Anthropol. 165, 72–89 (2018).

    Article  PubMed  Google Scholar 

  9. de Ruiter, D. J., Churchill, S. E., Hawks, J. & Berger, L. R. Late australopiths and the emergence of Homo. Annu. Rev. Anthropol. 46, 99–115 (2017).

    Article  Google Scholar 

  10. Skelton, R. R. & McHenry, H. M. Evolutionary relationships among early hominids. J. Hum. Evol. 23, 309–349 (1992).

    Article  Google Scholar 

  11. Strait, D. S., Grine, F. E. & Moniz, M. A. A reappraisal of early hominid phylogeny. J. Hum. Evol. 32, 17–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, H. F. & Grine, F. E. Cladistic analysis of early Homo crania from Swartkrans and Sterkfontein, South Africa. J. Hum. Evol. 54, 684–704 (2008).

    Article  PubMed  Google Scholar 

  13. Bobe, R. & Leakey, M. G. in The First Humans: Origins of the Genus Homo (eds Grine, F. E. et al.) 173–184 (Springer, 2009); https://doi.org/10.1007/978-1-4020-9980-9_15

  14. Bobe, R. & Carvalho, S. Hominin diversity and high environmental variability in the Okote Member, Koobi Fora Formation, Kenya. J. Hum. Evol. 126, 91–105 (2019).

    Article  PubMed  Google Scholar 

  15. Maxwell, S. J. The Quality of the Early Hominin Fossil Record: Implications for Evolutionary Analyses. PhD thesis, Univ. College London (2018).

  16. Dembo, M., Matzke, N. J., Mooers, A. & Collard, M. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proc. R. Soc. B 282, 20150943 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dembo, M. et al. The evolutionary relationships and age of Homo naledi: an assessment using dated Bayesian phylogenetic methods. J. Hum. Evol. 97, 17–26 (2016).

    Article  PubMed  Google Scholar 

  18. Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).

    Article  PubMed  Google Scholar 

  19. Donoghue, P. C. J. & Yang, Z. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R. Soc. B 371, 20160020 (2016).

    Article  Google Scholar 

  20. Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, S. & Blair Hedges, S. Advances in time estimation methods for molecular data. Mol. Biol. Evol. 33, 863–869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bromham, L. et al. Bayesian molecular dating: opening up the black box. Biol. Rev. 93, 1165–1191 (2017).

    Article  PubMed  Google Scholar 

  23. Ronquist, F., Lartillot, N. & Phillips, M. J. Closing the gap between rocks and clocks using total-evidence dating. Philos. Trans. R. Soc. B 371, 20150136 (2016).

    Article  Google Scholar 

  24. Pyron, R. A. Divergence time estimation using fossils as terminal taxa and the origins of lissamphibia. Syst. Biol. 60, 466–481 (2011).

    Article  PubMed  Google Scholar 

  25. Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93 (2015).

    Article  PubMed  Google Scholar 

  27. Jungers, W. L., Grabowski, M., Hatala, K. G. & Richmond, B. G. The evolution of body size and shape in the human career. Philos. Trans. R. Soc. B 371, 20150247 (2016).

  28. Ni, X., Flynn, J. J., Wyss, A. R. & Zhang, C. Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids. Sci. Adv. 5, eaav7913 (2019).

  29. Melchionna, M. & Mondanaro, A. Macroevolutionary trends of brain mass in primates. Biol. J. Linn. Soc. 129, 14–25 (2020).

    Google Scholar 

  30. Chatterjee, H. J., Ho, S. Y., Barnes, I. & Groves, C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol. Biol. 9, 259 (2009).

  31. Dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491–3500 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pozzi, L. et al. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 75, 165–183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

  38. Gavryushkina, A. & Zhang, C. in The Molecular Evolutionary Clock: Theory and Practice (ed. Ho, S. Y. W.) 175–193 (Springer International, 2020); https://doi.org/10.1007/978-3-030-60181-2_11

  39. Will, M., Pablos, A. & Stock, J. T. Long-term patterns of body mass and stature evolution within the hominin lineage. R. Soc. Open Sci. 4, 171339 (2017).

  40. Grabowski, M. & Jungers, W. L. Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat. Commun. 8, 880 (2017).

  41. Grabowski, M., Hatala, K. G. & Jungers, W. L. Body mass estimates of the earliest possible hominins and implications for the last common ancestor. J. Hum. Evol. 122, 84–92 (2018).

    Article  PubMed  Google Scholar 

  42. Grabowski, M. Bigger brains led to bigger bodies?: the correlated evolution of human brain and body size. Curr. Anthropol. 57, 174–196 (2016).

    Article  Google Scholar 

  43. Pagel, M. in Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P. L.) 269–286 (Taylor and Francis, 2002); https://doi.org/10.1201/9780203165171

  44. Gómez-Robles, A., Smaers, J. B., Holloway, R. L., Polly, P. D. & Wood, B. A. Brain enlargement and dental reduction were not linked in hominin evolution. Proc. Natl Acad. Sci. USA 114, 468–473 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Diniz-Filho, J. A. F., Jardim, L., Mondanaro, A. & Raia, P. Multiple components of phylogenetic non-stationarity in the evolution of brain size in fossil hominins. Evol. Biol. 46, 47–59 (2019).

    Article  Google Scholar 

  46. Miller, I. F., Barton, R. A. & Nunn, C. L. Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis. eLife 8, e41250 (2019).

  47. McHenry, H. M. & Coffing, K. Australopithecus to Homo: transformations in body and mind. Annu. Rev. Anthropol. 29, 125–146 (2000).

    Article  Google Scholar 

  48. Grabowski, M., Voje, K. L. & Hansen, T. F. Evolutionary modeling and correcting for observation error support a 3/5 brain–body allometry for primates. J. Hum. Evol. 94, 106–116 (2016).

    Article  PubMed  Google Scholar 

  49. Montgomery, S. H., Capellini, I., Barton, R. A. & Mundy, N. I. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol. 8, 9 (2010).

  50. Castiglione, S. et al. Ancestral state estimation with phylogenetic ridge regression. Evol. Biol. 47, 220–232 (2020).

    Article  Google Scholar 

  51. Potts, R. Environmental hypotheses of hominin evolution. Am. J. Phys. Anthropol. 107, 93–136 (1998).

    Article  Google Scholar 

  52. Potts, R. Evolution and climate variability. Science 273, 922–923 (1996).

    Article  CAS  Google Scholar 

  53. Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Richmond, B. G. & Jungers, W. L. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319, 1662–1665 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Crompton, R. H., Vereecke, E. E. & Thorpe, S. K. S. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J. Anat. 212, 501–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Almécija, S. et al. The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nat. Commun. 4, 2888 (2013).

  57. Kuperavage, A., Pokrajac, D., Chavanaves, S. & Eckhardt, R. B. Earliest known hominin calcar femorale in Orrorin tugenensis provides further Internal anatomical evidence for origin of human bipedal locomotion. Anat. Rec. 301, 1834–1839 (2018).

    Article  CAS  Google Scholar 

  58. Villmoare, B. et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347, 1352–1355 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Harmand, S. et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Leakey, M. G. et al. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410, 433–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Brown, B., Brown, F. H. & Walker, A. New hominids from the Lake Turkana Basin, Kenya. J. Hum. Evol. 41, 29–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Braun, D. R. et al. Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc. Natl Acad. Sci. USA 116, 11712–11717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lepre, C. J. et al. An earlier origin for the Acheulian. Nature 477, 82–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Gamble, C. S. Settling the Earth: the Archaeology of Deep Human History (Cambridge Univ. Press, 2013).

  65. Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).

    Article  Google Scholar 

  66. Hlubik, S. et al. Hominin fire use in the Okote member at Koobi Fora, Kenya: new evidence for the old debate. J. Hum. Evol. 133, 214–229 (2019).

    Article  PubMed  Google Scholar 

  67. Gowlett, J. A. J. The discovery of fire by humans: a long and convoluted process. Philos. Trans. R. Soc. B 371, 20150164 (2016).

  68. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D. & Conklin-Brittain, N. The raw and the stolen: cooking and the ecology of human origins. Curr. Anthropol. 40, 567–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Fonseca-Azevedo, K. & Herculano-Houzel, S. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl Acad. Sci. USA 109, 18571–18576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Proc. Natl Acad. Sci. USA 108, 19199–19203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joordens, J. C. A. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Grün, R. et al. Dating the skull from Broken Hill, Zambia, and its position in human evolution. Nature 580, 372–375 (2020).

    Article  PubMed  CAS  Google Scholar 

  73. Timmermann, A. Quantifying the potential causes of Neanderthal extinction: abrupt climate change versus competition and interbreeding. Quat. Sci. Rev. 238, 106331 (2020).

    Article  Google Scholar 

  74. Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kochiyama, T. et al. Reconstructing the Neanderthal brain using computational anatomy. Sci. Rep. 8, 6296 (2018).

  76. Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Hovers, E. in When Neandertals and Moderns Meet (ed. Conard, N.) 65–85 (Kerns Verlag, 2006).

  79. Scerri, E. M. L., Chikhi, L. & Thomas, M. G. Beyond multiregional and simple out-of-Africa models of human evolution. Nat. Ecol. Evol. 3, 1370–1372 (2019).

    Article  PubMed  Google Scholar 

  80. Proctor, C., Douka, K., Proctor, J. W. & Higham, T. The age and context of the KC4 Maxilla, Kent’s Cavern, UK. Eur. J. Archaeol. 20, 74–97 (2017).

    Article  Google Scholar 

  81. Villa, P. & Roebroeks, W. Neandertal demise: an archaeological analysis of the modern human superiority complex. PLoS ONE 9, 96424 (2014).

    Article  CAS  Google Scholar 

  82. Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. 34, 355–378 (2019).

    Article  Google Scholar 

  83. Downey, G. & Lende, D. H. in The Encultured Brain: an Introduction to Neuroanthropology (eds Lennde, D. H. & Downey, G.) 103–138 (MIT Press, 2012).

  84. Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kendal, J., Tehrani, J. J. & Odling-Smee, J. Human niche construction in interdisciplinary focus. Philos. Trans. R. Soc. B 366, 785–792 (2011).

    Article  Google Scholar 

  86. Potts, R. Evolution and environmental change in early human prehistory. Annu. Rev. Anthropol. 41, 151–167 (2012).

    Article  Google Scholar 

  87. Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, 63–71 (2008).

    Article  Google Scholar 

  89. Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article  Google Scholar 

  90. Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).

  91. Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).

    Article  PubMed  Google Scholar 

  92. Van Heteren, A. H. & Sankhyan, A. R. in Asian Perspectives on Human Evolution (ed. Sankhyan, A. R.) 172–187 (Serials Publications, 2009).

  93. Diniz-Filho, J. A. F. & Raia, P. Island rule, quantitative genetics and brain-body size evolution in Homo floresiensis. Proc. R. Soc. B 284, 20171065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kubo, D., Kono, R. T. & Kaifu, Y. Brain size of Homo floresiensis and its evolutionary implications. Proc. R. Soc. B 280, 20130338 (2013).

  95. Dennell, R. W., Louys, J., O’Regan, H. J. & Wilkinson, D. M. The origins and persistence of Homo floresiensis on Flores: biogeographical and ecological perspectives. Quat. Sci. Rev. 96, 98–107 (2014).

    Article  Google Scholar 

  96. Foster, J. B. Evolution of mammals on Islands. Nature 202, 234–235 (1964).

    Article  Google Scholar 

  97. Brown, P. et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Argue, D., Groves, C. P., Lee, M. S. Y. & Jungers, W. L. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. J. Hum. Evol. 107, 107–133 (2017).

    Article  PubMed  Google Scholar 

  99. Brumm, A. et al. Early stone technology on Flores and its implications for Homo floresiensis. Nature 441, 624–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Moore, M. W. & Brumm, A. in Interdisciplinary Approaches to the Oldowan (eds Hovers, E. & Braun, D. R.) 61–69 (Springer, 2009); https://doi.org/10.1007/978-1-4020-9060-8_6

  101. Garvin, H. M. et al. Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber. J. Hum. Evol. 111, 119–138 (2017).

    Article  PubMed  Google Scholar 

  102. Laird, M. F. et al. The skull of Homo naledi. J. Hum. Evol. 104, 100–123 (2017).

    Article  PubMed  Google Scholar 

  103. Holloway, R. L. et al. Endocast morphology of Homo naledi from the Dinaledi Chamber, South Africa. Proc. Natl Acad. Sci. USA 115, 5738–5743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kivell, T. L. et al. The hand of Homo naledi. Nat. Commun. 6, 8431 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Marchi, D. et al. The thigh and leg of Homo naledi. J. Hum. Evol. 104, 174–204 (2017).

    Article  PubMed  Google Scholar 

  106. Dirks, P. H. et al. The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. eLife 6, e24231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article  Google Scholar 

  108. Isler, K. & van Schaik, C. P. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400 (2009).

    Article  PubMed  Google Scholar 

  109. Isler, K. & Van Schaik, C. P. Metabolic costs of brain size evolution. Biol. Lett. 2, 557–560 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Berthaume, M. A., Delezene, L. K. & Kupczik, K. Dental topography and the diet of Homo naledi. J. Hum. Evol. 118, 14–26 (2018).

    Article  PubMed  Google Scholar 

  111. Nascimento, F. F., Reis, M., Dos & Yang, Z. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. O’Reilly, J. E., dos Reis, M. & Donoghue, P. C. J. Dating tips for divergence-time estimation. Trends Genet. 31, 637–650 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Yang, Z. & Donoghue, P. C. J. Dating species divergences using rocks and clocks. Philos. Trans. R. Soc. B 371, 20150126 (2016).

    Article  Google Scholar 

  114. Cameron, D. W & Groves, C. P. Bones, Stones and Molecules: Out of Africa and Human Origins (Elsevier, 2004).

  115. Cameron, D., Patnaik, R. & Sahni, A. The phylogenetic significance of the middle pleistocene Narmada hominin cranium from central India. Int. J. Osteoarchaeol. 14, 419–447 (2004).

    Article  Google Scholar 

  116. Berger, L. R. et al. Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328, 195–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Irish, J. D., Guatelli-Steinberg, D., Legge, S. S., De Ruiter, D. J. & Berger, L. R. Dental morphology and the phylogenetic ‘place’ of Australopithecus sediba. Science 340, 1233062 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Lordkipanidze, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342, 326–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Kimbel, W. H., Rak, Y. & Johanson, D. C. The Skull of Australopithecus afarensis (Oxford Univ. Press, 2004); https://doi.org/10.5860/choice.42-1028

  120. Strait, D. S. & Grine, F. E. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J. Hum. Evol. 47, 399–452 (2004).

    Article  PubMed  Google Scholar 

  121. Chang, M. L. Neandertal origins, Middle Pleistocene Systematics, and Tests of Current Taxonomic and Phylogenetic Hypotheses. PhD thesis, Univ. of Pennsylvania (2005).

  122. Martinón-Torres, M. et al. Dental evidence on the hominin dispersals during the Pleistocene. Proc. Natl Acad. Sci. USA 104, 13279–13282 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Gilbert, W. H. in Homo erectus: Pleistocene Evidence from the Middle Awash, Ethiopia (eds Gilbert, W. H. & Asfaw, B.) 265–311 (Univ. of California Press, 2008).

  124. Argue, D., Morwood, M. J., Sutikna, T., Jatmiko, & Saptomo, E. W. Homo floresiensis: a cladistic analysis. J. Hum. Evol. 57, 623–639 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Mounier, A., Marchal, F. & Condemi, S. Is Homo heidelbergens a distinct species? New insight on the Mauer mandible. J. Hum. Evol. 56, 219–246 (2009).

    Article  PubMed  Google Scholar 

  126. Zeitoun, V. The Human Canopy: Homo erectus, Homo soloensis, Homo pekinensis and Homo floresiensis (B.A.R. S1937, 2009).

  127. Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).

    Article  PubMed  Google Scholar 

  128. Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2021).

    Article  PubMed  Google Scholar 

  129. Finstermeier, K. et al. A mitogenomic phylogeny of living primates. PLoS ONE 8, 69504 (2013).

    Article  CAS  Google Scholar 

  130. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  132. Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Lewis, P. A likelihood approach to estimating phylogeny from discrete morphological character data. Soc. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  Google Scholar 

  134. Püschel, H. P., O’Reilly, J. E., Pisani, D. & Donoghue, P. C. J. The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63, 67–83 (2020).

    Article  Google Scholar 

  135. Katoh, S. et al. New geological and palaeontological age constraint for the gorilla–human lineage split. Nature 530, 215–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Kunimatsu, Y. et al. A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proc. Natl Acad. Sci. USA 104, 19220–19225 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Begun, D. R. Miocene hominids and the origins of the African apes and humans. Annu. Rev. Anthropol. 39, 67–84 (2010).

    Article  Google Scholar 

  138. Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evol. Anthropol. 21, 10–23 (2012).

    Article  PubMed  Google Scholar 

  139. Suwa, G., Kono, R. T., Katoh, S., Asfaw, B. & Beyene, Y. A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448, 921–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Harrison, T. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W.) 429–470 (Univ. of California Press, 2012); https://doi.org/10.1525/california/9780520257214.003.0024

  141. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berger, L. R., Hawks, J., Dirks, P. H. G. M., Elliott, M. & Roberts, E. M. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife 6, e24234 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kimbel, W. H. & Rak, Y. Australopithecus sediba and the emergence of Homo: questionable evidence from the cranium of the juvenile holotype MH 1. J. Hum. Evol. 107, 94–106 (2017).

    Article  PubMed  Google Scholar 

  145. Schroeder, L. et al. Skull diversity in the Homo lineage and the relative position of Homo naledi. J. Hum. Evol. 104, 124–135 (2017).

    Article  PubMed  Google Scholar 

  146. Ronquist, F. et al. Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. Gateway Computing Enviroments Workshop (GCE) 1–8 (IEEE, 2010); https://doi.org/10.1109/GCE.2010.5676129

  148. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  PubMed  Google Scholar 

  150. Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973).

  151. Jerison, H. J. Brain, body and encephalization in early primates. J. Hum. Evol. 8, 615–635 (1979).

    Article  Google Scholar 

  152. Cairό, O. External measures of cognition. Front. Hum. Neurosci. 5, 108 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Stephan, H., Frahm, H. D. & Baron, G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29 (1981).

    Article  CAS  Google Scholar 

  154. R. Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  155. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R package version 3.1-147 (2020).

  157. Ives, A. R. R 2 s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234–251 (2019).

    Article  PubMed  Google Scholar 

  158. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

Download references

Acknowledgements

This research was funded by the National Agency for Research and Development (ANID)/PFCHA/Doctorado en el extranjero Becas Chile/2018-72190003 to H.P.P.; a Marie Skłodowska-Curie Actions Individual Fellowship (H2020-MSCA-IF-2018-2020; no. 792611) and the European Research Council (ERC) starting grant PalM, under the European Union’s Horizon 2020 Research and Innovation Programme (no. 756226) to O.C.B.; and the Leverhulme Trust Early Career Fellowship, ECF-2018-264 to T.A.P.

Author information

Authors and Affiliations

Authors

Contributions

H.P.P. and T.A.P. conceived and designed the study. O.C.B. compiled the body mass and ECV dataset. J.E.O. provided methodological support. H.P.P. and T.A.P. carried out all the mentioned analyses and wrote an initial draft. H.P.P., O.C.B., J.E.O., R.B. and T.A.P. interpreted the obtained results and contributed to the writing of the submitted version of this work.

Corresponding authors

Correspondence to Hans P. Püschel or Thomas A. Püschel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Fredrik Ronquist and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Consensus trees with Bayesian posterior probabilities showing the support for the nodes.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis. Node numbers mentioned in text are within the red circles. We used soft constraints to allow the unconstrained taxa (that is, H. sapiens, H. neanderthalensis, H. heidelbergensis and Denisovans) to change position freely within the tree. For more details about the constraints used, see the Methods section.

Extended Data Fig. 2 Prior sensitivity analysis.

The dots indicate the mean and the lines the associated 95% highest posterior density interval (HPD) of the divergence-time estimations for each node. Different colours indicate the different priors that were tested. See the Methods for further details about each one of the priors that were tested.

Extended Data Fig. 3 Brain mass ACSR for each species mapped onto the four consensus time-calibrated phylogenies.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis. The ACSR values were reconstructed using a ML ancestral character estimation method under a Brownian motion model.

Extended Data Fig. 4 Brain mass (g) ACSR traitgram for each species mapped onto the four consensus time-calibrated phylogenies.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis.

Extended Data Fig. 5 Body mass (kg) ACSR traitgram for each species mapped onto the four consensus time-calibrated phylogenies.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis.

Extended Data Fig. 6 PEQ ACSR traitgram for each species mapped onto the four consensus time-calibrated phylogenies.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis.

Extended Data Fig. 7 Boxplots of brain mass (g) ACSR per node based on a sample of 9002 time-calibrated posterior trees for each one of the plots.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis. The red dots indicate the brain mass (g) ACSR conducted using the consensus trees (as in Extended Data Fig. 3). The median is indicated by the horizontal black line, the interquartile range (IQR) is the white box and the whiskers indicate the minimum and the maximum (at 1.5 * IQR of the lower and upper hinge respectively). For details of each node, see Fig. 2.

Extended Data Fig. 8 PGLS models of ln(body mass) on ln(brain mass) based on the different consensus trees.

a, Dembo et al.17 hypothesis, b, Au. sediba hypothesis, c, H. naledi hypothesis and d, H. floresiensis hypothesis. We used a generalised least-squares fit by restricted maximum likelihood (REML), and a Brownian motion correlation structure. The resulting equations and R2 are in the plots next to the regression line in red.

Extended Data Fig. 9 Boxplots of expected brain mass (a–d) and PEQ (e–h) for all the tips based on a sample of 9002 time-calibrated posterior trees for each one of the hypotheses.

a,e, Dembo et al.17 hypothesis; b,f, Au. sediba hypothesis; c,g, H. naledi hypothesis and d,h, H. floresiensis hypothesis. The red dots indicate the expected brain mass (in g) for the tips of the consensus trees (ad), or alternatively, the PEQ calculated for the tips of the consensus trees (eh). The median is indicated by the horizontal black line, the interquartile range (IQR) is the white box and the whiskers indicate the minimum and the maximum (at 1.5 * IQR of the lower and upper hinge respectively). Further details about the hypotheses and how the expected brain mass and the PEQ were calculated are provided in the Methods section.

Extended Data Fig. 10 Brain mass ACSR versus body mass ACSR regressions from the consensus trees for each one of hypotheses.

a–d, Regressions considering nodes 1 to 24, e–h, regressions considering nodes 1 to 13 and i-l, regressions considering nodes 13 to 24. a,e,i, Dembo et al.17 hypothesis; b, f,j, Au. sediba hypothesis; c,g,k, H. naledi hypothesis and d,h,l, H. floresiensis hypothesis. The regression equations and the R2 values are given next to the regression’s lines in red. Colours dark purple, yellow and green indicate nodes 1 to 12, node 13 and nodes 14 to 24, respectively. In the case of the H. floresiensis hypothesis, node 14 was highlighted in yellow instead of node 13 due changes in the position of this node for this hypothesis. Nodes 7, 8 and 23 are not considered due the lack of body mass and/or brain mass estimations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Püschel, H.P., Bertrand, O.C., O’Reilly, J.E. et al. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat Ecol Evol 5, 808–819 (2021). https://doi.org/10.1038/s41559-021-01431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01431-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing