Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mapping the deforestation footprint of nations reveals growing threat to tropical forests

Abstract

Deforestation, a significant threat to biodiversity, is accelerated by global demand for commodities. Although prior literature has linked deforestation to global supply chains, here we provide a fine-scale representation of spatial patterns of deforestation associated with international trade. Using remote sensing data and a multi-region input–output model, we quantify and map the spatiotemporal changes in global deforestation footprints over 15 years (2001–2015) at a 30-m resolution. We find that, while many developed countries, China and India have obtained net forest gains domestically, they have also increased the deforestation embodied in their imports, of which tropical forests are the most threatened biome. Consumption patterns of G7 countries drive an average loss of 3.9 trees per person per year. Some of the hotspots of deforestation embodied in international trade are also biodiversity hotspots, such as in Southeast Asia, Madagascar, Liberia, Central America and the Amazonian rainforest. Our results emphasize the need to reform zero-deforestation policies through strong transnational efforts and by improving supply chain transparency, public–private engagement and financial support for the tropics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Scheme to map the 15-year deforestation footprint induced by consumption in Singapore.
Fig. 2: Global deforestation driven by consumption in six example countries.
Fig. 3: Comparisons of deforestation footprints between countries/country groups.
Fig. 4: Embodied deforestation area per forest biome of selected net importers and exporters.
Fig. 5: GDP per capita and ratios of tropical forest/mangroves in the deforestation footprints.

Data availability

The results, calculated as described in the Methods, are based on the data from the Global Forest Watch (https://www.globalforestwatch.org), FAOSTAT (http://www.fao.org/faostat/en/#data/RL), EliScholar (https://elischolar.library.yale.edu/yale_fes_data/1/) and Eora MRIO (https://worldmrio.com) databases, all of which are publicly available. The plantation mask data are available at https://doi.org/10.6084/m9.figshare.12661145.v2. Maps for each G20 country are provided in Supplementary Fig. 6. The raster files (GeoTIFF) of these maps are available from the corresponding author upon request.

Code availability

Programming code used for analysis is available from the corresponding author on request.

References

  1. Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).

    Article  Google Scholar 

  2. UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).

  3. Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-5

  4. Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).

  5. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article  Google Scholar 

  6. Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).

    PubMed  Article  Google Scholar 

  7. Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).

    Article  Google Scholar 

  8. Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).

    Article  Google Scholar 

  10. Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).

    Article  Google Scholar 

  11. Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).

    Article  Google Scholar 

  12. Take action to stop Amazon burning. Nature 573, 163 (2019)

  13. Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).

    CAS  Article  Google Scholar 

  14. Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).

    Article  Google Scholar 

  15. Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).

    CAS  PubMed  Article  Google Scholar 

  16. de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).

    Article  Google Scholar 

  17. Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).

    CAS  PubMed  Article  Google Scholar 

  18. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article  Google Scholar 

  19. Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

    Article  Google Scholar 

  20. Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).

    Article  Google Scholar 

  21. Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).

    CAS  PubMed  Article  Google Scholar 

  22. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    CAS  Article  Google Scholar 

  23. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

    Article  Google Scholar 

  25. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Article  Google Scholar 

  26. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  PubMed  Article  Google Scholar 

  27. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).

    Article  Google Scholar 

  29. Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html

  30. Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).

  31. Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).

    Article  Google Scholar 

  32. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  PubMed  Article  Google Scholar 

  33. Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article  Google Scholar 

  35. Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  36. Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    CAS  PubMed  Article  Google Scholar 

  37. Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Article  Google Scholar 

  38. Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).

  39. Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    CAS  PubMed  Article  Google Scholar 

  40. Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).

    Article  Google Scholar 

  41. Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).

    Article  Google Scholar 

  42. Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).

    Article  Google Scholar 

  43. Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    PubMed  Article  CAS  Google Scholar 

  45. Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).

    Google Scholar 

  46. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).

    Article  Google Scholar 

  48. Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).

    Article  Google Scholar 

  51. Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).

    Article  Google Scholar 

  53. Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  54. Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).

    Article  Google Scholar 

  55. Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).

    Article  Google Scholar 

  56. Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).

    Article  Google Scholar 

  57. Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).

    Article  Google Scholar 

  58. Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).

  59. Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).

    Article  Google Scholar 

  60. Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).

    Google Scholar 

  61. Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).

    Article  Google Scholar 

  63. Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).

    Google Scholar 

  65. Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).

    Article  Google Scholar 

  67. Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    CAS  PubMed  Article  Google Scholar 

  68. Annual Review 2017 (PEFC, 2017).

  69. Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).

    Article  Google Scholar 

  70. Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).

    CAS  PubMed  Article  Google Scholar 

  71. World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d

  72. Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    CAS  PubMed  Article  Google Scholar 

  73. Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS  PubMed  Article  Google Scholar 

  74. Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).

    Article  CAS  Google Scholar 

  75. Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

    CAS  PubMed  Article  Google Scholar 

  76. Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).

    Article  Google Scholar 

  78. Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).

  79. Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).

    Article  Google Scholar 

  80. Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    CAS  PubMed  Article  Google Scholar 

  81. Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article  Google Scholar 

  82. Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).

    Article  Google Scholar 

  83. You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Institute for Humanity and Nature (project no. 14200135), the Japan Society for the Promotion of Science through Grant-in-Aid for Scientific Research (B) 18KT0004, and the Moonshot Agriculture, Forestry and Fisheries Research and Development Program MS509. We thank T. Nakashizuka, J. Fry and O. Taherzadeh for valuable comments, and P. Potapov for technical help in processing Hansen’s data.

Author information

Authors and Affiliations

Authors

Contributions

K.K. designed and led the research. N.T.H. and K.K. conducted the analysis. N.T.H. prepared the figures. N.T.H. and K.K. wrote the manuscript.

Corresponding author

Correspondence to Keiichiro Kanemoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Robin Chazdon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Biome-level deforestation footprint per capita in 2015.

(a) the number of embodied tree loss per capita and (b) the deforestation footprint area per capita.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–6 and Tables 1–5.

Reporting summary

Peer review information

Supplementary Video

Animation of the cumulative spatial deforestation footprints from 2001 to 2015 for the USA.

Supplementary Data

1 – ‘Commodity Sector List’ tab: The list of commodities/sectors generated from the MRIO classification; 2 – ‘Agricultural Commodity Ranking’ tab: The table of commodity-induced deforestation rankings for every production country for the entire period 2006–2010.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoang, N.T., Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat Ecol Evol 5, 845–853 (2021). https://doi.org/10.1038/s41559-021-01417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01417-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing