Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conserving intraspecific variation for nature’s contributions to people


The rapid loss of intraspecific variation is a hidden biodiversity crisis. Intraspecific variation, which includes the genomic and phenotypic diversity found within and among populations, is threatened by local extinctions, abundance declines, and anthropogenic selection. However, biodiversity assessments often fail to highlight this loss of diversity within species. We review the literature on how intraspecific variation supports critical ecological functions and nature’s contributions to people (NCP). Results show that the main categories of NCP (material, non-material, and regulating) are supported by intraspecific variation. We highlight new strategies that are needed to further explore these connections and to make explicit the value of intraspecific variation for NCP. These strategies will require collaboration with local and Indigenous groups who possess critical knowledge on the relationships between intraspecific variation and ecosystem function. New genomic methods provide a promising set of tools to uncover hidden variation. Urgent action is needed to document, conserve, and restore the intraspecific variation that supports nature and people. Thus, we propose that the maintenance and restoration of intraspecific variation should be raised to a major global conservation objective.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The IUCN provides foundational data for global conservation efforts but drastically under-quantifies and thus under-protects intraspecific variation.
Fig. 2: Few studies assess the relationship between NCP and intraspecific variation.
Fig. 3: Genetic diversity within species shows drastic declines since the Industrial Revolution.
Fig. 4: Intraspecific variation and its contributions to people are threatened by anthropogenic risks.
Fig. 5: Intraspecific diversity provides material, non-material, and regulating contributions to people.
Fig. 6: Opposite extremes of conservation strategies that ignore intraspecific variation, only focusing on species (left panel in grey) versus those that explicitly focus on preserving intraspecific variation (right panel in teal).


  1. 1.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

  2. 2.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    PubMed  Google Scholar 

  3. 3.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed  Google Scholar 

  4. 4.

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).

    CAS  PubMed  Google Scholar 

  5. 5.

    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).

    PubMed  Google Scholar 

  6. 6.

    Leigh, D. M. et al. Estimated six per cent loss of genetic variation in wild populations since the Industrial Revolution. Evol. Appl. 12, 1505–1512 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083–1085 (2020).

    PubMed  Google Scholar 

  9. 9.

    The Red List of Threatened Species, Version 2019-3 (IUCN, 2019);

  10. 10.

    DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).

    Google Scholar 

  11. 11.

    Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).

    PubMed  Google Scholar 

  12. 12.

    Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).

    Google Scholar 

  13. 13.

    Living Planet Report (WWF, 2018).

  14. 14.

    Laikre, L. & Ryman, N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 25, 505–509 (1996).

    Google Scholar 

  15. 15.

    Delaney, K. S., Riley, S. P. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pfenninger, M., Bálint, M. & Pauls, S. U. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol. Biol. 12, 224 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rocha‐Olivares, A., Fleeger, J. W. & Foltz, D. W. Differential tolerance among cryptic species: a potential cause of pollutant-related reductions in genetic diversity. Environ. Toxicol. Chem. 23, 2132–2137 (2004).

    PubMed  Google Scholar 

  18. 18.

    Laikre, L., Schwartz, M. K., Waples, R. S. & Ryman, N. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).

    PubMed  Google Scholar 

  19. 19.

    Channell, R. & Lomolino, M. V. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).

    Google Scholar 

  20. 20.

    Bijlsma, R. & Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 5, 117–129 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ouborg, N. J., van Treuren, R. & van Damme, J. M. M. The significance of genetic erosion in the process of extinction. Oecologia 86, 359–367 (1991).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).

    CAS  PubMed  Google Scholar 

  23. 23.

    Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).

    PubMed  Google Scholar 

  24. 24.

    Millette, K. L., Gonzalez, A. & Cristescu, M. E. Breaking ecological barriers: anthropogenic disturbance leads to habitat transitions, hybridization, and high genetic diversity. Sci. Total Environ. 740, 140046 (2020).

    CAS  PubMed  Google Scholar 

  25. 25.

    Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020).

    PubMed  Google Scholar 

  26. 26.

    Allentoft, M. & O’Brien, J. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2, 47–71 (2010).

    Google Scholar 

  27. 27.

    Blomqvist, D., Pauliny, A., Larsson, M. & Flodin, L.-Å. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evol. Biol. 10, 33 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Polfus, J. L. et al. Łeghágots’enetę (learning together): the importance of indigenous perspectives in the identification of biological variation. Ecol. Soc. 21, 18 (2016).

    Google Scholar 

  29. 29.

    Marin, K., Coon, A. & Fraser, D. J. Traditional ecological knowledge reveals the extent of sympatric lake trout diversity and habitat preferences. Ecol. Soc. 22, 20 (2017).

    Google Scholar 

  30. 30.

    Small, N. & Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Change 44, 57–67 (2017).

    Google Scholar 

  31. 31.

    Satz, D. et al. The challenges of incorporating cultural ecosystem services into environmental assessment. Ambio 42, 675–684 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–613 (2010).

    CAS  PubMed  Google Scholar 

  33. 33.

    Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl Acad. Sci. USA 110, 1750–1755 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Larson, W. A., Lisi, P. J., Seeb, J. E., Seeb, L. W. & Schindler, D. E. Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon. J. Evol. Biol. 29, 1846–1859 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2018).

    PubMed  Google Scholar 

  37. 37.

    Moore, J. W., McClure, M., Rogers, L. A. & Schindler, D. E. Synchronization and portfolio performance of threatened salmon. Conserv. Lett. 3, 340–348 (2010).

    Google Scholar 

  38. 38.

    Satterthwaite, W. H. & Carlson, S. M. Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex. Can. J. Fish. Aquat. Sci. 72, 1860–1875 (2015).

    Google Scholar 

  39. 39.

    Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).

    CAS  PubMed  Google Scholar 

  41. 41.

    Carlson, S. M. & Satterthwaite, W. H. Weakened portfolio effect in a collapsed salmon population complex. Can. J. Fish. Aquat. Sci. 68, 1579–1589 (2011).

    Google Scholar 

  42. 42.

    Maldonado, C. et al. Phylogeny predicts the quantity of antimalarial alkaloids within the iconic yellow cinchona bark (Rubiaceae: Cinchona calisaya). Front. Plant Sci. 8, 391 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cueva-Agila, A. et al. Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genet. Genomes 15, 81 (2019).

    Google Scholar 

  44. 44.

    Simpson, R. D., Sedjo, R. A. & Reid, J. W. Valuing biodiversity for use in pharmaceutical research. J. Polit. Econ. 104, 163–185 (1996).

    Google Scholar 

  45. 45.

    Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Darwin, C. On the Origins of Species by Means of Natural Selection (John Murray, 1859).

  47. 47.

    Weldon, W. F. R. Mendel’s laws of alternative inheritance in peas. Biometrika 1, 228–254 (1902).

    Google Scholar 

  48. 48.

    Courchamp, F. et al. Rarity value and species extinction: the anthropogenic allee effect. PLoS Biol. 4, e415 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Davis, J. N. Color abnormalities in birds: a proposed nomenclature for birders. Birding 39, 36–46 (2007).

    Google Scholar 

  50. 50.

    Kolbe, J. J. et al. The desire for variety: Italian wall lizard (Podarcis siculus) populations introduced to the United States via the pet trade are derived from multiple native-range sources. Biol. Invasions 15, 775–783 (2013).

    Google Scholar 

  51. 51.

    Tapley, B., Griffiths, R. A. & Bride, I. Dynamics of the trade in reptiles and amphibians within the United Kingdom over a ten-year period. Herpetol. J. 21, 27–34 (2011).

    Google Scholar 

  52. 52.

    Militz, T. A., Foale, S., Kinch, J. & Southgate, P. C. Natural rarity places clownfish colour morphs at risk of targeted and opportunistic exploitation in a marine aquarium fishery. Aquat. Living Resour. 31, 18 (2018).

    Google Scholar 

  53. 53.

    Rowley, J. J. L., Emmett, D. A. & Voen, S. Harvest, trade and conservation of the Asian arowana Scleropages formosus in Cambodia. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1255–1262 (2008).

    Google Scholar 

  54. 54.

    Clapp, R. A. Wilderness ethics and political ecology: remapping the Great Bear Rainforest. Polit. Geogr. 23, 839–862 (2004).

    Google Scholar 

  55. 55.

    Cusack, C. M. Save the White Tiger. J Law Soc. Deviance 12, 1 (2016).

    Google Scholar 

  56. 56.

    Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gaos, A. R. et al. Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries. Ecol. Evol. 6, 1251–1264 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Read, T. D. et al. Draft sequencing and assembly of the genome of the world’s largest fish, the whale shark: Rhincodon typus Smith 1828. BMC Genom. 18, 532 (2017).

    Google Scholar 

  59. 59.

    Wilting, A. et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1, e1400175 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hedrick, P. W. Gene flow and genetic restoration: the florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).

    Google Scholar 

  61. 61.

    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2007).

    PubMed  Google Scholar 

  63. 63.

    Lahr, E. C., Backe, K. M. & Frank, S. D. Intraspecific variation in morphology, physiology, and ecology of wildtype relative to horticultural varieties of red maple (Acer rubrum). Trees 34, 603–614 (2020).

    CAS  Google Scholar 

  64. 64.

    Yoshihara, Y. & Isogai, T. Does genetic diversity of grass improve yield, digestibility, and resistance to weeds, pests and disease infection? Arch. Agron. Soil Sci. 65, 1623–1629 (2019).

    Google Scholar 

  65. 65.

    Busby, P. E., Newcombe, G., Dirzo, R. & Whitham, T. G. Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. J. Ecol. 101, 867–877 (2013).

    Google Scholar 

  66. 66.

    Berrang, P., Karnosky, D. F., Mickler, R. A. & Bennett, J. P. Natural selection for ozone tolerance in Populustremuloides. Can. J. Res. 16, 1214–1216 (1986).

    CAS  Google Scholar 

  67. 67.

    Kremp, A. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol. Evol. 2, 1195–1207 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Boyden, S., Binkley, D. & Stape, J. L. Competition among eucalyptus trees depends on genetic variation and resource supply. Ecology 89, 2850–2859 (2008).

    PubMed  Google Scholar 

  69. 69.

    Crutsinger, G. M., Reynolds, W. N., Classen, A. T. & Sanders, N. J. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia 158, 65–75 (2008).

    PubMed  Google Scholar 

  70. 70.

    Dubs, F. et al. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl. Ecol. 33, 66–78 (2018).

    Google Scholar 

  71. 71.

    Mansion-Vaquié, A., Wezel, A. & Ferrer, A. Wheat genotypic diversity and intercropping to control cereal aphids. Agric. Ecosyst. Environ. 285, 106604 (2019).

    Google Scholar 

  72. 72.

    Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).

    Google Scholar 

  73. 73.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS  PubMed  Google Scholar 

  74. 74.

    Vytopil, E. & Willis, B. L. Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20, 281–288 (2001).

    Google Scholar 

  75. 75.

    Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Branching dynamics of transplanted colonies of the threatened coral Acropora cervicornis: morphogenesis, complexity, and modeling. J. Exp. Mar. Biol. Ecol. 482, 134–141 (2016).

    Google Scholar 

  76. 76.

    Lohr, K. E. & Patterson, J. T. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 486, 87–92 (2017).

    Google Scholar 

  77. 77.

    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).

    CAS  PubMed  Google Scholar 

  78. 78.

    Contolini, G. M., Reid, K. & Palkovacs, E. P. Climate shapes population variation in dogwhelk predation on foundational mussels. Oecologia 192, 553–564 (2020).

    PubMed  Google Scholar 

  79. 79.

    Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Isaac, M. E. et al. Farmer perception and utilization of leaf functional traits in managing agroecosystems. J. Appl. Ecol. 55, 69–80 (2018).

    Google Scholar 

  81. 81.

    Thomas, E. et al. NTFP harvesters as citizen scientists: validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon. PLoS ONE 12, e0183743 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).

    Google Scholar 

  87. 87.

    Coddington, J., Lewin, H. A., Robinson, G. E. & Kress, W. J. The Earth Biogenome Project. Biodivers. Inf. Sci. Stand. 3, e37344 (2019).

    Google Scholar 

  88. 88.

    Crain, R., Cooper, C. & Dickinson, J. L. Citizen science: a tool for integrating studies of human and natural systems. Annu. Rev. Environ. Resour. 39, 641–665 (2014).

    Google Scholar 

  89. 89.

    Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 264 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Searfoss, A. M., Liu, W. & Creanza, N. Geographically well-distributed citizen science data reveals range-wide variation in the chipping sparrow’s simple song. Anim. Behav. 161, 63–76 (2020).

    Google Scholar 

  91. 91.

    Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & David, J. Ziolkowski Jr. The North American Breeding Bird Survey 1966–2011: summary analysis and species accounts. North Am. Fauna 79, 1–32 (2013).

    Google Scholar 

  92. 92.

    Nugent, J. iNaturalist: citizen science for 21st-century naturalists. Sci. Scope 41, 12 (2018).

    Google Scholar 

  93. 93.

    McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).

    Google Scholar 

  94. 94.

    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    PubMed  Google Scholar 

  95. 95.

    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species. Act. Mar. Fish. Rev. 53, 11–22 (1991).

    Google Scholar 

  96. 96.

    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS  PubMed  Google Scholar 

  97. 97.

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the speciespopulation continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).

    Google Scholar 

  99. 99.

    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    PubMed  Google Scholar 

  100. 100.

    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).

    PubMed  Google Scholar 

  102. 102.

    Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Vasconcelos, R. et al. Combining molecular and landscape tools for targeting evolutionary processes in reserve design: an approach for islands. PLoS ONE 13, e0200830 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).

    Google Scholar 

  105. 105.

    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).

    PubMed  Google Scholar 

  106. 106.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Google Scholar 

  107. 107.

    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Thompson, J., Stow, A. & Raftos, D. Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Mar. Ecol. Prog. Ser. 570, 127–139 (2017).

    Google Scholar 

  110. 110.

    Schindler, D. E., Leavitt, P. R., Brock, C. S., Johnson, S. P. & Quay, P. D. Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska. Ecology 86, 3225–3231 (2005).

    Google Scholar 

  111. 111.

    Ainsworth, E. A. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests. Tree Physiol. 36, 679–681 (2016).

    CAS  PubMed  Google Scholar 

Download references


An initial research meeting to launch the paper was funded by the European Institute for Marine Studies’ International Chair for Marine Ecosystem Services through the French Agency for National Research’s Investissements d’avenir ISblue (ANR-17-EURE-0015) and the LabexMER (//ANR/-/-10/-/LABX/-/19). S.D. was funded by the University of California Office of the President grant for the Institute for the Study of Ecological and Evolutionary Climate Impacts. E.P.P. was partially supported by the NOAA Cooperative Institute for Marine Ecosystems and Climate. We thank members of the Palkovacs lab, the Leaché lab, and the Urban Eco Evo Research Coordination Network for important conversations on the manuscript.

Author information




S.D., L.H.P. and E.P.P. conceived the original idea for the manuscript. S.D. completed the literature review portion and the visualizations. S.D., L.H.P., B.S. and E.P.P. contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Eric P. Palkovacs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Andrew Gonzalez and Assaf Shwartz for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

I. Search terms for literature review. II. References for Fig. 2.

Supplementary Table 1

Summary of primary literature from Web of Science search where intraspecific variation is studied in species that provide an NCP. This table includes both studies that measured the relationship between intraspecific variation and NCP, and those that only quantified intraspecific variation in a species that provided an NCP as articulated by the original authors. NCP categorizations were made by S.D. based on terms used by the original authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Des Roches, S., Pendleton, L.H., Shapiro, B. et al. Conserving intraspecific variation for nature’s contributions to people. Nat Ecol Evol (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing