Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity

Abstract

Tropical marine biodiversity studies have been biased towards more accessible coastal habitats and shallow coral reefs, while deeper inter-reef habitats are less studied due to different survey challenges. One such inter-reef habitat is the ‘bioherms’ dominated by the calcareous Halimeda macroalgae. In the northern section of Australia’s Great Barrier Reef, Halimeda algal bioherms occupy >6,000 km2 of the inter-reef seabed, more than twice the area of adjacent shallow coral reefs. Here, we describe the biodiversity of the plant, vertebrate and invertebrate communities inhabiting Halimeda bioherms. By combining previous spatial mapping with legacy benthic biodiversity datasets, we find that Halimeda bioherms are a critically important complex habitat that hosts higher average species richness and diversity for both plants and invertebrates than the surrounding inter-reef (non-coral reef) seascape. Furthermore, at the community level, the structure of the bioherm-associated biotic assemblage is distinct from the non-bioherm community, with 40% of Halimeda bioherm-associated species not recorded at any non-bioherm sites. These findings improve estimates of the biodiversity of the Great Barrier Reef and elevate Halimeda bioherms as a critically important inter-reef habitat. Regular long-term monitoring is required to detect potential impacts to inter-reef biodiversity and ecosystem structure and function under future climate change scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the study area showing Halimeda bioherms and Seabed Biodiversity Project survey sites.
Fig. 2: Halimeda bioherm versus non-bioherm species richness.
Fig. 3: Species diversity and frequency of occurrence.
Fig. 4: Biotic community assemblage NMDS and bootstrap averages.

Similar content being viewed by others

Data availability

The original Seabed Biodiversity Project data used in this study were provided under a data use agreement from CSIRO. The data are available from the CSIRO National Collections and Marine Infrastructure Information and Data Centre, discoverable at the Global Biodiversity Information Facility (https://www.gbif.org/dataset/3b7f6307-2f03-4f25-9f64-6aa4c3a3aea1). The Seabed Biodiversity Project final report may be accessed at http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf.

References

  1. Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).

    Article  CAS  Google Scholar 

  2. Kenchington, R. & Hutchings, P. Some implications of high biodiversity for management of tropical marine ecosystems—an Australian perspective. Diversity 10, 1 (2017).

    Article  Google Scholar 

  3. Field, C. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3–14 (1998).

    Article  Google Scholar 

  4. Honda, K., Nakamura, Y., Nakaoka, M., Uy, W. H. & Fortes, M. D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8, e65735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).

    Article  Google Scholar 

  6. Unsworth, R. K. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).

    Article  Google Scholar 

  7. Hoeksema, B. W. in Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics in Geobiology (ed. Renema, W.) 117–178 (Springer, 2007).

  8. Pitcher, C. R. et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research (CSIRO Marine and Atmospheric Research, 2007); http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf

  9. Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—how adequately is it protected? PeerJ 6, e4747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harris, P. T. et al. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70, 284–293 (2013).

    Article  Google Scholar 

  11. Chin, A. in State of the Great Barrier Reef Report 2003 (ed. Chin, A.) 1–16 (Great Barrier Reef Marine Park Authority, 2003); https://hdl.handle.net/11017/669

  12. Whiteway, T., Smithers, S., Potter, A. & Brooke, B. Geological and Geomorphological Features of Outstanding Universal Value in the Great Barrier Reef World Heritage Area. Report prepared for SEWPaC (Coastal Marine and Climate Change Group, Geoscience Australia and School of Earth and Environmental Sciences, James Cook Univ., 2013).

  13. Mathews, E., Heap, A. & Woods, M. Inter-Reefal Seabed Sediments and Geomorphology of the Great Barrier Reef: A Spatial Analysis (Geoscience Australia, 2007).

  14. Huang, Z. et al. A conceptual surrogacy framework to evaluate the habitat potential of submarine canyons. Prog. Oceanogr. 169, 199–213 (2018).

    Article  Google Scholar 

  15. McNeil, M. A., Webster, J. M., Beaman, R. J. & Graham, T. L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 1343–1355 (2016).

    Article  Google Scholar 

  16. Cumings, E. R. Reefs or bioherms? Geol. Soc. Am. Bull. 43, 331–352 (1932).

    Article  Google Scholar 

  17. Klement, K. W. Practical classification of reefs and banks, bioherms and biostromes. Am. Assoc. Pet. Geol. Bull. 51, 167–168 (1967).

  18. Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30m (Geoscience Australia 2017); https://doi.org/10.4225/25/5a207b36022d2

  19. Orme, G. The sedimentological importance of Halimeda in the development of back reef lithofacies, northern Great Barrier Reef (Australia). In Proc. 5th International Coral Reef Symposium 31–37 (1985).

  20. Orme, G. R. & Salama, M. S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6, 131–137 (1988).

    Article  Google Scholar 

  21. Davies, P. in Encyclopaedia of Modern Coral Reefs—Structure, Form and Process (ed. Hopley, D.) 539–549 (Springer, 2011).

  22. Marshall, J. F. & Davies, P. J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148 (1988).

    Article  Google Scholar 

  23. McNeil, M. A., Nothdurft, L. D., Dyriw, N. J., Webster, J. M. & Beaman, R. J. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. https://doi.org/10.1002/dep2.122 (2020).

  24. Great Barrier Reef Outlook Report 2009 (Great Barrier Reef Marine Park Authority, 2009).

  25. Great Barrier Reef Outlook Report 2014 (Great Barrier Reef Marine Park Authority, 2014).

  26. Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2017).

    Article  Google Scholar 

  27. Ferrari, R. et al. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Change Biol. 22, 1965–1975 (2016).

    Article  Google Scholar 

  28. Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, e57386 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pyle, R. L. & Copus, J. M. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019).

  30. Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge Univ. Press, 2007).

  31. Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci 345, 101–118 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article  Google Scholar 

  33. Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org

  35. Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C. Tubipora musica. IUCN Red List of Threatened Species 2008: e.T133065A3589084 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133065A3589084.en

  36. Turak, E., Sheppard, C. & Wood, E. Catalaphyllia jardinei. IUCN Red List of Threatened Species 2008: e.T132890A3479919 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132890A3479919.en

  37. Cappo, M. & Kelley, R. in Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef (ed. Wolanski, E.) 161–187(CRC Press, 2000).

  38. Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).

    Article  Google Scholar 

  39. Sambrook, K. et al. Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish. (Oxf.) 20, 903–920 (2019).

    Article  Google Scholar 

  40. Hurrey, L. P., Pitcher, C. R., Lovelock, C. E. & Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 492, 69–83 (2013).

    Article  Google Scholar 

  41. Kämpf, J. & Chapman, P. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems (Springer International Publishing, 2016).

  42. Wolanski, E., Drew, E., Abel, K. M. & O’Brien, J. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26, 169–201 (1988).

    Article  CAS  Google Scholar 

  43. Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).

    Article  Google Scholar 

  44. Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M. & Steinberg, C.Intrusive upwelling in the Central Great Barrier Reef. J. Geophys. Res. Oceans 121, 8395–8416 (2016).

    Article  Google Scholar 

  45. Berkelmans, R., Weeks, S. J. & Steinberg, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).

    Article  Google Scholar 

  46. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).

    Article  Google Scholar 

  48. Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J.Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41(2011).

    Article  Google Scholar 

  49. Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368 (2016).

    Article  Google Scholar 

  50. Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Price, N. N., Hamilton, S. L., Tootell, J. S. & Smith, J. E. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).

    Article  CAS  Google Scholar 

  52. Sinutok, S., Hill, R., Doblin, M. A., Kühl, M. & Ralph, P. J. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213 (2012).

    Article  Google Scholar 

  53. Wizemann, A., Meyer, F. W., Hofmann, L. C., Wild, C. & Westphal, H. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34, 941–954 (2015).

    Article  Google Scholar 

  54. Smithers, S., Harvey, N., Hopley, D. & Woodroffe, C. D. in Climate Change and the Great Barrier Reef: A Vulnerability Assessment (eds Johnson, J. E. & Marshall, P. A.) 667–716 (Great Barrier Reef Marine Park Authority, 2007).

  55. Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).

    Article  Google Scholar 

  56. Pitcher, C. R. GBR Seabed Biodiversity Mapping Project: Phase 1. Draft Report to CRC-Reef (Australian Institute of Marine Science, 2002).

  57. Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).

    Article  Google Scholar 

  58. Clarke, K. & Gorley, R. PRIMER v7: User Manual/Tutorial (PRIMER-e, 2015).

  59. Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edn (PRIMER-e, 2014).

  60. Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the work of the vessels, crew and scientists who conducted the original Seabed Biodiversity Project surveys and CSIRO for providing the original survey database. M.M. thanks M. Cappo for helpful insights regarding the BRUVS fish juveniles and R. Kelley and the Australian Coral Reef Society (ACRS) for the Red Emperor Blue Highway infographic. M.M. acknowledges the NSW Foundation for Parks and Wildlife, the Great Barrier Reef Marine Park Authority (GBRMPA), ACRS and the National Geographic Society (no. EC-190R-18) for funding support and the Australian Museum for fieldwork support at the Lizard Island Research Station (conducted under GBRMPA permit no. G17-39618.1). The graphics used in Figs. 2 and 3 are courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (https://ian.umces.edu/symbols/).

Author information

Authors and Affiliations

Authors

Contributions

M.M. and A.R.P. conducted the data analysis, supported by J.F. C.R.P. developed the Seabed Biodiversity Project and is custodian of the original dataset. M.M. wrote the manuscript with contributions from J.F. and all other authors. J.M.W. and L.D.N. lead Project HALO—Halimeda bioherms: Origins, function and fate in the Great Barrier Reef.

Corresponding author

Correspondence to Mardi McNeil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Hudson Pinheiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Results and Discussion and Tables 1–12.

Reporting Summary

Supplementary Data 1

An Excel workbook comprising two tabs named Supplementary Table 13 and Supplementary Table 14 that lists the taxonomic hierarchy of all taxa recorded in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNeil, M., Firn, J., Nothdurft, L.D. et al. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat Ecol Evol 5, 647–655 (2021). https://doi.org/10.1038/s41559-021-01400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01400-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing