Multidisciplinary evidence for early banana (Musa cvs.) cultivation on Mabuyag Island, Torres Strait

Abstract

Multiproxy archaeobotanical analyses (starch granule, phytolith and microcharcoal) of an abandoned agricultural terrace at Wagadagam on Mabuyag Island, Torres Strait, Australia, document extensive, low-intensity forms of plant management from at least 2,145–1,930 cal yr bp and intensive forms of cultivation at 1,376–1,293 cal yr bp. The agricultural activities at 1,376–1,293 cal yr bp are evidenced from terrace construction, banana (Musa cultivars) cultivation and dramatic transformations to the local palaeoenvironment. The robust evidence for the antiquity of horticulture in western Torres Strait provides an historical basis for understanding the diffusion of cultivation practices and cultivars, most likely from New Guinea. This study also provides a methodological template for the investigation of plant management, potentially including forms of cultivation that were practiced in northern Australia before European colonization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Archaeological investigations at Wagadagam.
Fig. 2: Photomicrographs of individual banana starch granules.
Fig. 3: Photomicrographs of clumped banana starch granules.
Fig. 4: Photomicrographs of banana (Musa sp.) phytoliths and probable banana phytoliths.
Fig. 5: Summary of starch, phytolith and microcharcoal counts, together with artefact distributions, plotted by XU for Wagadagam test unit C.

Data availability

All data are available in the manuscript and supplementary material.

References

  1. 1.

    Wright, D. et al. Exploring ceremony: the archaeology of a men’s meeting house (‘kod’) on Mabuyag, Western Torres Strait. Camb. Archaeol. J. 26, 721–740 (2016).

    Article  Google Scholar 

  2. 2.

    Walker, D. Bridge and Barrier: The Natural and Cultural History of Torres Strait (Australian National Univ., 1972).

  3. 3.

    Gerritsen, R. Australia and the Origins of Agriculture (British Archaeological Reports Limited, 2008).

  4. 4.

    Pascoe, B. Dark Emu: Aboriginal Australia and the Birth of Agriculture (Magabala Books, 2014).

  5. 5.

    Cosgrove, R., Field, J. & Ferrier, Å. The archaeology of Australia’s tropical rainforests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 150–173 (2007).

    Article  Google Scholar 

  6. 6.

    Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2012).

  7. 7.

    Gott, B. Cumbungi, Typha species: a staple Aboriginal food in southern Australia. Aust. Aborig. Stud. 1999, 33–50 (1999).

    Google Scholar 

  8. 8.

    Gott, B. MurnongMicroseris scapigera: a study of a staple food of Victorian Aborigines. Aust. Aborig. Stud. 2, 2–17 (1983).

    Google Scholar 

  9. 9.

    Hallam, S. J. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G. C.) 136–151 (Unwin and Hyman, 1989).

  10. 10.

    Jones, R. Firestick farming. Aust. Nat. Hist. 16, 224–228 (1969).

    Google Scholar 

  11. 11.

    Hynes, R. A. & Chase, A. K. Plants, sites and domiculture: Aboriginal influence upon plant communities in Cape York Peninsula. Archaeol. Ocean. 17, 38–50 (1982).

    Article  Google Scholar 

  12. 12.

    Denham, T., Donohue, M. & Booth, S. Horticultural experimentation in northern Australia reconsidered. Antiquity 83, 634–648 (2009).

    Article  Google Scholar 

  13. 13.

    Jones, R. & Meehan, B. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G. C.) 120–135 (Unwin Hyman, 1989).

  14. 14.

    Bowman, D. M. J. S., Gibson, J. & Kondo, T. Outback palms: Aboriginal myth meets DNA analysis. Nature 520, 33 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Rangan, H. et al. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia. PLoS ONE 10, e0119758 (2015).

    Article  Google Scholar 

  16. 16.

    Rossetto, M. et al. From Songlines to genomes: prehistoric assisted migration of a rain forest tree by Australian Aboriginal people. PLoS ONE 12, e0186663 (2017).

    Article  Google Scholar 

  17. 17.

    Bourke, R. M. & Hardwood, T. A. Food and Agriculture in Papua New Guinea (ANU E-Press, 2009).

  18. 18.

    Denham, T. Tracing Early Agriculture in the Highlands of New Guinea: Plot, Mound and Ditch (Routledge, 2018).

  19. 19.

    Denham, T. et al. Origins of agriculture at Kuk Swamp in the Highlands of New Guinea. Science 301, 189–193 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Golson, J., Denham, T., Hughes, P. J., Muke, J. D. & Swadling, P. Ten Thousand Years of Cultivation at Kuk Swamp in the Highlands of Papua New Guinea (ANU E-Press, 2017).

  21. 21.

    Barham, A. J. The local environmental impact of prehistoric populations on Saibai Island, northern Torres Strait, Australia: enigmatic evidence from Holocene swamp lithostratigraphic records. Quat. Int. 59, 71–105 (1999).

    Article  Google Scholar 

  22. 22.

    Parr, J. & Carter, M. Phytolith and starch analysis of sediment samples from two archaeological sites on Dauar Island, Torres Strait, northeastern Australia. Veg. Hist. Archaeobot. 12, 131–141 (2003).

    Article  Google Scholar 

  23. 23.

    Harris, D. R. Early agriculture in New Guinea and the Torres Strait divide. Antiquity 69, 848–854 (1995).

    Article  Google Scholar 

  24. 24.

    Harris, D. R. in Social and Ecological Systems (eds Burnham, P. C. & Ellen, R. F.) 75–109 (Academic Press, 1979).

  25. 25.

    Harris, D. in Sunda and Sahul: Prehistoric Studies in Southeast Asia, Melanesia and Australia (eds Allen, J. et al.) 421–463 (Academic Press, 1977).

  26. 26.

    Jukes, J. B. Narrative of the Surveying Voyage of H.M.S. Fly, Commanded by Captain F.P. Blackwood, in Torres Strait, New Guinea and Other Islands of the Eastern Archipelago, During the Years 1842–1846 (Boone, 1847).

  27. 27.

    Macgillivray, J. Narrative of the Voyage of H.M.S. Rattlesnake, Commanded by the Late Captain Owen Stanley During the Years 1846–50: to which is added Mr. E.B. Kennedy’s Expedition for the Exploration of the Cape York Peninsula (Boone, 1852).

  28. 28.

    Moore, D. The Australian–Papuan frontier at Cape York: a reconstruction of the ethnography of the peoples on mainland Cape York and the adjacent Torres Strait Islands, their interaction with each other, and their prehistory; incorporating unpublished documentary evidence and an archaeological survey of the area. PhD thesis, Univ. of New England (1974).

  29. 29.

    Moresby, J. Discoveries & Surveys in New Guinea and the D’Entrecasteaux Islands: A Cruise in Polynesia and Visits to the Pearlshelling Stations in the Torres Straits of H.M.S. Basilisk (J. Murray, 1876).

  30. 30.

    Haddon, A. C. Reports of the Cambridge Anthropological Expedition to Torres Straits: Arts and Crafts (Univ. of Cambridge Press, 1912).

  31. 31.

    Haddon, A. C. Reports of the Cambridge Anthropological Expedition to Torres Straits: Sociology, Magic and Religion of the Western Islanders (Univ. of Cambridge Press, 1904).

  32. 32.

    Haddon, A. C. The ethnography of the Western Tribe of Torres Straits. J. Anthropol. Inst. Great Britain Ireland 19, 297–440 (1890).

    Article  Google Scholar 

  33. 33.

    McNiven, I. J. Precarious islands: Kulkalgal reef island settlement and high mobility across 700 km of seascape, central Torres Strait and northern Great Barrier Reef. Quat. Int. 385, 39–55 (2015).

    Article  Google Scholar 

  34. 34.

    Crouch, J., McNiven, I. J., David, B., Rowe, C. & Weisler, M. I. Berberass: marine resource specialisation and environmental change in Torres Strait during the past 4000 years. Archaeol. Ocean. 42, 49–64 (2007).

    Article  Google Scholar 

  35. 35.

    Harris, D. R. & Ghaleb Kirby, B. in Goemulgaw Lagal: Cultural and Natural Histories of the Island of Mabuyag, Torres Strait Parts 1 & 2 (eds McNiven, I. J. & Hitchcock, G. J.) 283–375 (Queensland Museum, 2015).

  36. 36.

    McNiven, I. Inclusions, exclusions and transitions: Torres Strait Islander constructed landscapes over the ast 4000 years, northeast Australia. Holocene 18, 449–462 (2008).

  37. 37.

    Fell, D. G. & Stanton, D. J. The vegetation and flora of Mabuyag, Torres Strait, Queensland. Mem. Queensl. Mus. 8, 1–33 (2015).

    Google Scholar 

  38. 38.

    Reichert, E. T. The Differentiation and Specificity of Starches in Relation to Genera, Species, etc. Vol. 1 (Carnegie Institute, 1913).

  39. 39.

    Lentfer, C. J. Going bananas in Papua New Guinea: a preliminary study of starch granule morphotypes in Musaceae fruit. Ethnobot. Res. Appl. 7, 217–238 (2009).

    Article  Google Scholar 

  40. 40.

    Lentfer, C. J. in Archaeological Science Under A Microscope: Studies in Residue and Ancient DNA Analysis in Honour of Tom Loy Terra Australis 30 (eds Haslam, M. et al.) 80–101 (ANU E Press, 2009).

  41. 41.

    Allen, M. S. & Ussher, E. Starch analysis reveals prehistoric plant translocations and shell tool use, Marquesas Islands, Polynesia. J. Archaeol. Sci. 40, 2799–2812 (2013).

    Article  Google Scholar 

  42. 42.

    Fullagar, R. L. K., Field, J., Denham, T. & Lentfer, C. Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at Kuk Swamp in the highlands of Papua New Guinea. J. Archaeol. Sci. 33, 595–614 (2006).

    Article  Google Scholar 

  43. 43.

    Ball, T., Vrydaghs, L., Van Den Hauwe, I., Manwaring, J. & De Langhe, E. Differentiating banana phytoliths: wild and edible Musa acuminata and Musa balbisiana. J. Archaeol. Sci. 33, 1228–1236 (2006).

    Article  Google Scholar 

  44. 44.

    Lentfer, C. J. Tracing domestication and cultivation of bananas from phytoliths: an update from Papua New Guinea. Ethnobot. Res. Appl. 7, 247–270 (2009).

    Article  Google Scholar 

  45. 45.

    Wilson, S. M. Phytolith analysis at Kuk; an early agricultural site in Papua New Guinea. Archaeol. Ocean. 20, 90–97 (1985).

    Article  Google Scholar 

  46. 46.

    Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (AltaMira Press, 2006).

  47. 47.

    De Langhe, E., Vrydaghs, L., Perrier, X. & Denham, T. Fahien reconsidered: Pleistocene exploitation of wild bananas and Holocene introduced Musa cultivars to Sri Lanka. J. Quat. Sci. 34, 405–409 (2019).

    Article  Google Scholar 

  48. 48.

    Madella, M., Alexandre, A. & Ball, T. International code for phytolith nomenclature 1.0. Ann. Bot. 96, 253–260 (2005).

    CAS  Article  Google Scholar 

  49. 49.

    Piperno, D. R. & Pearsall, D. M. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithson. Contrib. Bot. 85, 1–40 (1998).

    Article  Google Scholar 

  50. 50.

    Rovner, I. Potential of opal phytoliths for use in palaeoecological reconstruction. Quat. Res. 1, 343–359 (1971).

    Article  Google Scholar 

  51. 51.

    Bozarth, S. R. in Phytolith Systematics: Emerging Issues (eds Rapp, G. Jr. & Mulholland, S. C.) 193–214 (Springer, 1992).

  52. 52.

    Rowe, C. Holocene History of Vegetation Change in the Western Torres Strait Region, Queensland, Australia. PhD thesis, Monash Univ. (2005).

  53. 53.

    Denham, T. P. & Haberle, S. Agricultural emergence and transformation in the Upper Wahgi Valley, Papua New Guinea, during the Holocene: theory, method and practice. Holocene 18, 481–496 (2008).

    Article  Google Scholar 

  54. 54.

    Haberle, S., Lentfer, C., O’Donnell, S. & Denham, T. The palaeoenvironments of Kuk Swamp from the beginnings of agriculture in the highlands of Papua New Guinea. Quat. Int. 249, 129–139 (2012).

    Article  Google Scholar 

  55. 55.

    Perrier, X. et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl Acad. Sci. USA 108, 11311–11318 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Simmonds, N. W. Botanical results of the banana collecting expedition, 1954–5. Kew Bull. 11, 463–489 (1956).

    Article  Google Scholar 

  57. 57.

    Denham, T. P. in Archaeology of Oceania: Australian and the Pacific Islands (ed. Lilley, I.) 160–188 (Blackwell, 2006).

  58. 58.

    Torrence, R. & Barton, H. Ancient Starch Research (Left Coast Press, 2006).

  59. 59.

    Therin, M. & Lentfer, C. J. in Ancient Starch Research (eds Torrence, R. & Barton, H.) 159–161 (Left Coast Press, 2006).

  60. 60.

    Loy, T. H., Spriggs, M. & Wickler, S. Direct evidence for human use of plants 28,000 years ago: starch residues on stone artefacts from the northern Solomon Islands. Antiquity 66, 898–912 (1992).

    Article  Google Scholar 

  61. 61.

    Pearsall, D. M. Phytolith analysis of archaeological soils: evidence for maize cultivation in Formative Ecuador. Science 199, 177–178 (1978).

    CAS  Article  Google Scholar 

  62. 62.

    Parr, J. A comparison of heavy liquid flotation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Rev. Palaeobot. Palynol. 120, 315–336 (2002).

    Article  Google Scholar 

  63. 63.

    Bowdery, D. Phytolith Analysis Applied to Pleistocene–Holocene Archaeological Sites in the Australian Arid Zone (British Archaeological Reports, 1998).

  64. 64.

    Mooney, S. D. & Tinner, W. The analysis of charcoal in peat and organic sediments. Mires Peat 7, 1–18 (2011).

    Google Scholar 

  65. 65.

    Torrence, R., Wright, R. & Conway, R. Identification of starch granules using image analysis and multivariate techniques. J. Archaeol. Sci. 31, 519–532 (2004).

    Article  Google Scholar 

  66. 66.

    Grimm, E. C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35 (1987).

    Article  Google Scholar 

  67. 67.

    Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  68. 68.

    Hogg, A. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Goemulgal, traditional owners of Mabuyag. Funding for the fieldwork was provided by a Griffith University/James Cook University collaborative grant awarded to D.W. and S. Ulm; and for the laboratory research by Australian Research Council grant no. FT150100420 to T.D. Microscopy facilities were provided by the Centre for Advanced Microscopy and School of Biology, Australian National University. We thank D. Fell for providing assistance and information relating to Mabuyag vegetation; M. Prebble for assistance with starch, phytolith and summary multiplots; A. Fogel (Griffith) for provision of GIS files; and K. Dancey and K. Pelling (Australian National University, Cartography) for assistance with redrafting of Figs. 14.

Author information

Affiliations

Authors

Contributions

The archaeobotanical study was devised by R.N.W., D.W. and T.D. Excavation information and samples were provided by D.W. Microfossil analysis was undertaken by R.N.W. with assistance of A.C. and under direction of T.D. All authors contributed to the interpretation of results and writing of the paper.

Corresponding author

Correspondence to Robert N. Williams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stratigraphic distribution of starch types (% of total starch granules per XU, total count shown in grey) for Wagadagam Square C, showing zones delineated by CONISS analysis.

Stratigraphic distribution of starch types (% of total starch granules per XU, total count shown in grey) for Wagadagam Square C, showing zones delineated by CONISS analysis.

Extended Data Fig. 2 Stratigraphic distribution of phytolith types (% of total phytolith sum per XU; dot indicates <1%) and counts of spicules, diatoms and microcharcoal for Wagadagam Square C.

Stratigraphic distribution of phytolith types (% of total phytolith sum per XU; dot indicates <1%) and counts of spicules, diatoms and microcharcoal for Wagadagam Square C. Stratigraphic zones are delineated by CONISS analysis of phytolith morphotype counts.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–9 and Table 1.

Reporting Summary

Supplementary Data

Supplementary Table 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, R.N., Wright, D., Crowther, A. et al. Multidisciplinary evidence for early banana (Musa cvs.) cultivation on Mabuyag Island, Torres Strait. Nat Ecol Evol 4, 1342–1350 (2020). https://doi.org/10.1038/s41559-020-1278-3

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing