Impact of 2019–2020 mega-fires on Australian fauna habitat

Abstract

Australia’s 2019–2020 mega-fires were exacerbated by drought, anthropogenic climate change and existing land-use management. Here, using a combination of remotely sensed data and species distribution models, we found these fires burnt ~97,000 km2 of vegetation across southern and eastern Australia, which is considered habitat for 832 species of native vertebrate fauna. Seventy taxa had a substantial proportion (>30%) of habitat impacted; 21 of these were already listed as threatened with extinction. To avoid further species declines, Australia must urgently reassess the extinction vulnerability of fire-impacted species and assist the recovery of populations in both burnt and unburnt areas. Population recovery requires multipronged strategies aimed at ameliorating current and fire-induced threats, including proactively protecting unburnt habitats.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vertebrate fauna habitat burned during the 2019–2020 mega-fires.
Fig. 2: Proportional impact of the 2019–2020 mega-fires on the habitats of 832 species.

Data availability

All datasets used in this analysis are available via the citations identified in the Methods. The raw data used to create Figs. 1 and 2 are available in Supplementary Table 1 and in figshare with the identifier https://figshare.com/s/62ef92b49704bb139333.

Code availability

The code used in this study is freely available at https://figshare.com/s/d9140d7c22e5ebbf2e03.

Change history

  • 10 August 2020

    The Data availability and Code availability statements have been amended to update the links where the data and code are deposited, respectively. The second sentence of the Data availability statement now reads: ‘The raw data used to create Figs. 1 and 2 are available in Supplementary Table 1 and in figshare with the identifier https://figshare.com/s/62ef92b49704bb139333.’ The Code availability statement now reads ‘The code used in this study is freely available at https://figshare.com/s/d9140d7c22e5ebbf2e03.’

References

  1. 1.

    Bowman, D. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Mangel, M. & Tier, C. Four facts every conservation biologist should know about persistence. Ecology 75, 607–614 (1994).

    Google Scholar 

  3. 3.

    Gill, A. M. Fire and the Australian flora: a review. Aust. For. 38, 4–25 (1975).

    Google Scholar 

  4. 4.

    Brotons, L., Herrando, S. & Pons, P. Wildfires and the expansion of threatened farmland birds: the ortolan bunting Emberiza hortulana in Mediterranean landscapes. J. Appl. Ecol. 45, 1059–1066 (2008).

    Google Scholar 

  5. 5.

    Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. Biol. Sci. 280, 20132297 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bowman, D. M. J. S., Wood, S. W., Neyland, D., Sanders, G. J. & Prior, L. D. Contracting Tasmanian montane grasslands within a forest matrix is consistent with cessation of Aboriginal fire management. Austral Ecol. 38, 627–638 (2013).

    Google Scholar 

  7. 7.

    Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. M. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).

    PubMed  Google Scholar 

  8. 8.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

  9. 9.

    Murphy, B. P. & Russell-Smith, J. Fire severity in a northern Australian savanna landscape: the importance of time since previous fire. Int. J. Wildl. Fire 19, 46–51 (2010).

    Google Scholar 

  10. 10.

    Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 16, 1151–1156 (2013).

    PubMed  Google Scholar 

  11. 11.

    Fonseca, M. G. et al. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Nino event. Ecol. Appl. 27, 2514–2527 (2017).

    PubMed  Google Scholar 

  12. 12.

    Huge Wildfires in Russia’s Siberian Province Continue (NASA, 2019).

  13. 13.

    Escobar, H. Amazon fires clearly linked to deforestation, scientists say. Science 365, 853 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    2018 Incident Archive Report (California Government, 2019).

  15. 15.

    Dennis, R., Hoffmann, A., Applegate, G., von Gemmingen, G. & Kartawinata, K. Large-scale fire: creator and destroyer of secondary forests in western Indonesia. J. Trop. Sci. 13, 786–799 (2001).

    Google Scholar 

  16. 16.

    Verhegghen, A. et al. The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 8, 986 (2016).

    Google Scholar 

  17. 17.

    Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).

    Google Scholar 

  18. 18.

    Borunda, A. See how much of the Amazon is burning, how it compares to other years. National Geographic (29 August 2019).

  19. 19.

    Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Glob. Change Biol. 26, 1039–1041 (2020).

    Google Scholar 

  20. 20.

    Kooyman, R. M., Watson, J. & Wilf, P. Gondwana World Heritage Site burns. Science 367, 1083 (2020).

    PubMed  Google Scholar 

  21. 21.

    Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).

    PubMed  Google Scholar 

  22. 22.

    Davis, R. et al. Conserving long unburnt vegetation is important for bird species, guilds and diversity. Biodivers. Conserv. 25, 2709–2722 (2016).

    Google Scholar 

  23. 23.

    Doherty, T. S., Davis, R. A., van Etten, E. J. B., Collier, N. & Krawiec, J. Response of a shrubland mammal and reptile community to a history of landscape-scale wildfire. Int. J. Wildl. Fire 24, 534–543 (2015).

    Google Scholar 

  24. 24.

    Dixon, K. M., Cary, G. J., Worboys, G. L. & Gibbons, P. The disproportionate importance of long-unburned forests and woodlands for reptiles. Ecol. Evol. 8, 10952–10963 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Taylor, R. S. et al. Landscape‐scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity? Divers. Distrib. 18, 519–529 (2012).

    Google Scholar 

  26. 26.

    Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).

    Google Scholar 

  27. 27.

    Chia, E. K. et al. Effects of the fire regime on mammal occurrence after wildfire: site effects vs landscape context in fire-prone forests. Ecol. Manag. 363, 130–139 (2016).

    Google Scholar 

  28. 28.

    Leahy, L. et al. Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl. Res. 42, 705–716 (2015).

    Google Scholar 

  29. 29.

    Murphy, S. A. & Legge, S. M. The gradual loss and episodic creation of palm cockatoo (Probosciger aterrimus) nest-trees in a fire- and cyclone-prone habitat. Emu 107, 1–6 (2007).

    Google Scholar 

  30. 30.

    Lyon, J. P. & O’Connor, J. P. Smoke on the water: can riverine fish populations recover following a catastrophic fire-related sediment slug? Austral Ecol. 33, 794–806 (2008).

    Google Scholar 

  31. 31.

    Haslem, A. et al. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biol. Conserv. 152, 212–221 (2012).

    Google Scholar 

  32. 32.

    Kearney, S. et al. The threats to Australia’s imperilled species and implications for a national conservation response. Pac. Conserv. Biol. 25, 231–244 (2018).

  33. 33.

    Ward, M. S. et al. Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).

    Google Scholar 

  34. 34.

    Species of National Environmental Significance (Commonwealth of Australia, 2019).

  35. 35.

    National Indicative Aggregated Fire Extent Dataset Version 20200225 (Commonwealth of Australia, 2020); https://go.nature.com/38wZSRr

  36. 36.

    Graham, E. M. et al. Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions. Australas. J. Environ. Manag. 26, 112–123 (2019).

    Google Scholar 

  37. 37.

    Hoskin, C., Grigg, G., Stewart, D. & Macdonald, S. Frogs of Australia (James Cook University, 2015).

  38. 38.

    Tingley, R. et al. Geographic and taxonomic patterns of extinction risk in Australian squamates. Biol. Conserv. 238, 108203 (2019).

    Google Scholar 

  39. 39.

    Guidelines for Assessing the Conservation Status of Native Species According to the Environment Protection and Biodiversity Conservation Act 1999 and Environment Protection and Biodiversity Conservation Regulations 2000 (Commonwealth of Australia, 2000).

  40. 40.

    Rapid Analysis of Impacts of the 2019–20 Fires on Animal Species, and Prioritisation of Species for Management Response – Preliminary Report (Commonwealth of Australia, 2020).

  41. 41.

    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    CAS  Google Scholar 

  42. 42.

    Scheele, B. C. et al. Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country. Biol. Conserv. 235, 273–278 (2019).

    Google Scholar 

  43. 43.

    Victoria’s Bushfire Emergency: Biodiversity Response and Recovery (Victoria State Government, 2020).

  44. 44.

    Smales, I., Brown, P., Menkhorst, P., Holdsworth, M. & Holz, P. Contribution of captive management of orange-bellied parrots to the recovery programme for the species in Australia. Int. Zoo. Yearb. 37, 171–178 (2000).

    Google Scholar 

  45. 45.

    Broughton, S. K. & Dickman, C. R. The effect of supplementary food on home range of the southern brown bandicoot, Isoodon obesulus. Aust. J. Ecol. 16, 71–78 (1991).

    Google Scholar 

  46. 46.

    Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. A. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores. Austral Ecol. 36, 791–799 (2011).

    Google Scholar 

  47. 47.

    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  48. 48.

    Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).

    Google Scholar 

  49. 49.

    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Taylor, C., Mccarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).

    Google Scholar 

  51. 51.

    Zylstra, P. J. Flammability dynamics in the Australian Alps. Austral Ecol. 43, 578–591 (2018).

    Google Scholar 

  52. 52.

    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Woinarski, J. C. Z. et al. Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261 (2019).

    Google Scholar 

  54. 54.

    Lindenmayer, D. B., Hunter, M. L., Burton, P. J. & Gibbons, P. Effects of logging on fire regimes in moist forests. Conserv. Lett. 2, 271–277 (2009).

    Google Scholar 

  55. 55.

    Berry, Z. C., Wevill, K. & Curran, T. J. The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Res. 51, 525–533 (2011).

    Google Scholar 

  56. 56.

    McAlpine, C. A. et al. A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate. Glob. Change Biol. 15, 2206–2223 (2009).

    Google Scholar 

  57. 57.

    Dale, V. H. et al. Climate Change and forest disturbances. BioScience 51, 723–734 (2001).

    Google Scholar 

  58. 58.

    Interim Biogeographic Regionalisation for Australia (IBRA) Version 7 (Subregions) (Commonwealth of Australia, 2018); https://go.nature.com/3e6j21L

  59. 59.

    Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).

    Google Scholar 

  60. 60.

    Reside, A. E., Watson, I., Vanderwal, J. & Kutt, A. S. Incorporating low-resolution historic species location data decreases performance of distribution models. Ecol. Model. 222, 3444–3448 (2011).

    Google Scholar 

  61. 61.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  62. 62.

    Fenner, A. L. & Bull, C. M. Short-term impact of grassland fire on the endangered pygmy bluetongue lizard. J. Zool. 272, 444–450 (2007).

    Google Scholar 

  63. 63.

    Kuchling, G. Impact of fuel reduction burns and wildfires on the critically endangered western swamp tortoise Peudemydura umbrina. In Ecological Society of Australia Conference Proceedings (2007).

  64. 64.

    Driscoll, D. A. & Dale Roberts, J. Impact of fuel-reduction burning on the frog Geocrinia lutea in southwest Western Australia. Austral Ecol. 22, 334–339 (1997).

    Google Scholar 

  65. 65.

    Smith, A., Meulders, B., Bull, C. M. & Driscoll, D. Wildfire-induced mortality of Australian reptiles. Herpetol. Notes 5, 233–235 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank S. Legge and C. Pavey for their critical comments on an early version of the manuscript and the Commonwealth Government for providing both species and fire datasets. A.I.T.T. is supported by an ARC DECRA Fellowship.

Author information

Affiliations

Authors

Contributions

J.E.M.W. conceived the idea. M.W., J.E.M.W., A.I.T.T., J.Q.R., B.A.W., A.E.R., S.L.M., H.J.M., M.M., H.P.P., S.J.V., J.L.O., E.J.M., A.C.G. and L.J.S. designed the research. A.E.R. and S.L.M. extracted non-threatened species data. M.W. and B.A.W. assembled and revised the database and analysed the data. M.W., A.I.T.T., J.Q.R., B.A.W., A.E.R., S.L.M., H.J.M., M.M., H.P.P., S.J.V., J.L.O., E.J.M., A.C.G., J.C.Z.W., S.T.G., M.L., B.C.S., J.C., D.G.N., D.B.L., R.M.K., J.S.S., L.J.S. and J.E.M.W. wrote and edited the manuscript.

Corresponding author

Correspondence to Michelle Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Supplementary Table 1

This file contains all taxa impacted by the 2019–2020 mega-fires, including their approximate habitat loss, approximate proportional habitat loss and approximate habitat remaining.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ward, M., Tulloch, A.I.T., Radford, J.Q. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat Ecol Evol (2020). https://doi.org/10.1038/s41559-020-1251-1

Download citation

Further reading