Female-biased gene flow between two species of Darwin’s finches


The mosaic nature of hybrid genomes is well recognized, but little is known of how they are shaped initially by patterns of breeding, selection, recombination and differential incompatibilities. On the small Galápagos island of Daphne Major, two species of Darwin’s finches, Geospiza fortis and G. scandens, hybridize rarely and back-cross bidirectionally with little or no loss of fitness under conditions of plentiful food. We used whole-genome sequences to compare genomes from periods before and after successful interbreeding followed by back-crossing. We inferred extensive introgression from G. fortis to G. scandens on autosomes and mitochondria but not on the Z chromosome. The unique combination of long-term field observations and genomic data shows that the reduction of gene flow for Z-linked loci primarily reflects female-biased gene flow, arising from a hybrid-male disadvantage in competition for high-quality territories and mates, rather than from genetic incompatibilities at Z-linked loci.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in morphology and introgression.
Fig. 2: Introgression between G. fortis and G. scandens.
Fig. 3: Differentiation across the genome and at ALX1.
Fig. 4: Genomic regions resistant to gene flow.

Data availability

The Illumina reads have been submitted to the short reads archive (http://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA530015. The following figures have associated raw data: Fig. 1a,b and Extended Data Fig. 1. The raw data are available in Supplementary Table 1.

Code availability

The analyses of the data were carried out with publicly available software, and all are cited in the Methods. The custom scripts used are available at https://github.com/sangeet2019/Darwins-Finches.


  1. 1.

    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

  2. 2.

    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, 20170688 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

    PubMed  Google Scholar 

  5. 5.

    Edwards, S. V., Potter, S., Schmitt, C. J., Bragg, J. G. & Moritz, C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc. Natl Acad. Sci. USA 113, 8025–8032 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Elgvin, T. O. et al. The genomic mosaicism of hybrid speciation. Sci. Adv. 3, e1602996 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Larsen, P. A., Marchan-Rivadeneira, M. R. & Baker, R. J. Natural hybridization generates mammalian lineage with species characteristics. Proc. Natl Acad. Sci. USA 107, 11447–11452 (2010).

    CAS  PubMed  Google Scholar 

  9. 9.

    Carling, M. D., Lovette, I. J. & Brumfield, R. T. Historical divergence and gene flow: coalescent analyses of mitochondrial, autosomal and sex-linked loci in Passerina buntings. Evolution 64, 1762–1772 (2010).

    PubMed  Google Scholar 

  10. 10.

    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Liu, K. J. et al. Interspecific introgressive origin of genomic diversity in the house mouse. Proc. Natl Acad. Sci. USA 112, 196–201 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

    PubMed  Google Scholar 

  14. 14.

    Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

    PubMed  Google Scholar 

  15. 15.

    Pereira, R. J., Barreto, F. S. & Burton, R. S. Ecological novelty by hybridization: experimental evidence for increased thermal tolerance by transgressive segregation in Tigriopus californicus. Evolution 68, 204–215 (2014).

    PubMed  Google Scholar 

  16. 16.

    Hedrick, P. W. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22, 4606–4618 (2013).

    PubMed  Google Scholar 

  17. 17.

    Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315–336 (1966).

    CAS  PubMed  Google Scholar 

  18. 18.

    Campbell, C. R., Poelstra, J. W. & Yoder, A. D. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124, 561–583 (2018).

    Google Scholar 

  19. 19.

    Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    Google Scholar 

  20. 20.

    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

    PubMed  Google Scholar 

  21. 21.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Barrera-Guzman, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl Acad. Sci. USA 115, E218–E225 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Reply to Rosenthal et al.: both premating and postmating isolation likely contributed to manakin hybrid speciation. Proc. Natl Acad. Sci. USA 115, E4146–E4147 (2018).

    PubMed  Google Scholar 

  24. 24.

    Burns, K. J. et al. Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol. Phylogenet. Evol. 75, 41–77 (2014).

    PubMed  Google Scholar 

  25. 25.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Google Scholar 

  26. 26.

    Sato, A. et al. Phylogeny of Darwin’s finches as revealed by mtDNA sequences. Proc. Natl Acad. Sci. USA 96, 5101–5106 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Peters, K. J., Myers, S. A., Dudaniec, R. Y., O’Connor, J. A. & Kleindorfer, S. Females drive asymmetrical introgression from rare to common species in Darwin’s tree finches. J. Evol. Biol. 30, 1940–1952 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).

  29. 29.

    Grant, P. R. & Grant, B. R. 40 Years of Evolution: Darwin’s Finches on Daphne Major Island (Princeton Univ. Press, 2014).

  30. 30.

    Grant, P. R. & Grant, B. R. Conspecific versus heterospecific gene exchange between populations of Darwin’s finches. Phil. Trans. R. Soc. B 365, 1065–1076 (2010).

    PubMed  Google Scholar 

  31. 31.

    Grant, B. R. & Grant, P. R. Evolution of Darwin’s finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251, 111–117 (1993).

    Google Scholar 

  32. 32.

    Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256, 193–197 (1992).

    CAS  PubMed  Google Scholar 

  33. 33.

    Stemshorn, K. C., Reed, F. A., Nolte, A. W. & Tautz, D. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol. Ecol. 20, 1475–1491 (2011).

    PubMed  Google Scholar 

  34. 34.

    Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species? Bioessays 38, 140–149 (2016).

    PubMed  Google Scholar 

  35. 35.

    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Joseph, L., Drew, A., Mason, I. J. & Peters, J. L. Introgression between non-sister species of honeyeaters (Aves: Meliphagidae) several million years after speciation. Biol. J. Linn. Soc. 128, 583–591 (2019).

    Google Scholar 

  37. 37.

    Zhang, G., Parker, P., Li, B., Li, H. & Wang, J. The genome of Darwin’s finch (Geospiza fortis). GigaScience https://doi.org/10.5524/100040 (2012).

  38. 38.

    Baack, E. J. & Rieseberg, L. H. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 17, 513–518 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Rheindt, F. E. & Edwards, S. V. Genetic introgression: an integral but neglected component of speciation in birds. Auk 128, 620–632 (2011).

    Google Scholar 

  40. 40.

    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science 313, 224–226 (2006).

    CAS  PubMed  Google Scholar 

  42. 42.

    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Coyne, J. A. & Orr, A. R. Speciation (Sinauer, 2004).

  44. 44.

    Kleindorfer, S. et al. Species collapse via hybridization in Darwin’s tree finches. Am. Nat. 183, 325–341 (2014).

    PubMed  Google Scholar 

  45. 45.

    Hasselman, D. J. et al. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species. Mol. Ecol. 23, 1137–1152 (2014).

    PubMed  Google Scholar 

  46. 46.

    Behm, J. E., Ives, A. R. & Boughman, J. W. Breakdown in postmating isolation and the collapse of a species pair through hybridization. Am. Nat. 175, 11–26 (2010).

    PubMed  Google Scholar 

  47. 47.

    Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Taylor, E. B. et al. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15, 343–355 (2006).

    CAS  PubMed  Google Scholar 

  49. 49.

    Dutheil, J. Y., Munch, K., Nam, K., Mailund, T. & Schierup, M. H. Strong selective sweeps on the X chromosome in the human–chimpanzee ancestor explain its low divergence. PLoS Genet. 11, e1005451 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Irwin, D. E. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27, 3831–3851 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Runemark, A., Eroukhmanoff, F., Nava-Bolanos, A., Hermansen, J. S. & Meier, J. I. Hybridization, sex-specific genomic architecture and local adaptation. Phil. Trans. R. Soc. B 373, 20170419 (2018).

    PubMed  Google Scholar 

  52. 52.

    Lavretsky, P. et al. Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Mol. Ecol. 24, 5364–5378 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Storchova, R., Reif, J. & Nachman, M. W. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64, 456–471 (2010).

    CAS  PubMed  Google Scholar 

  54. 54.

    Hooper, D. M., Griffith, S. C. & Price, T. D. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol. Ecol. 28, 1246–1262 (2019).

    CAS  PubMed  Google Scholar 

  55. 55.

    Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl Acad. Sci. USA 116, 12373–12382 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Grant, P. R. & Grant, B. R. Demography and the genetically effective sizes of two populations of Darwin’s finches. Ecology 73, 766–784 (1992).

    Google Scholar 

  57. 57.

    Seehausen, O., Takimoto, G., Roy, D. & Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44 (2008).

    PubMed  Google Scholar 

  58. 58.

    Rudman, S. M. & Schluter, D. Ecological impacts of reverse speciation in threespine stickleback. Curr. Biol. 26, 490–495 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    Wirtz, P. Mother species–father species: unidirectional hybridization in animals with female choice. Anim. Behav. 58, 1–12 (1999).

    CAS  PubMed  Google Scholar 

  60. 60.

    Grant, P. R. & Grant, B. R. Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution 48, 297–316 (1994).

    PubMed  Google Scholar 

  61. 61.

    Grant, P. R. & Grant, B. R. Role of sexual imprinting in assortative mating and premating isolation in Darwin’s finches. Proc. Natl Acad. Sci. USA 115, E10879–E10887 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Ellegren, H. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 44, 239–259 (2013).

    Google Scholar 

  63. 63.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 10–33 (2013).

    PubMed  Google Scholar 

  66. 66.

    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Felsenstein, J. PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  68. 68.

    Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15, 749–763 (2014).

    PubMed  Google Scholar 

  69. 69.

    Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Grant, P. R. & Grant, B. R. How and Why Species Multiply: The Radiation of Darwin’s Finches (Princeton Univ. Press, 2008).

Download references


We thank U. Gustafson for expert wet laboratory assistance and E. Enbody for helpful discussion on the manuscript. The collection of the material, funded by the National Science Foundation (NSF), was conducted with annual permits from the Galápagos National Parks Directorate, with the approval of Princeton University’s Animal Care Committee and in accordance with its protocols, and supported logistically by the Charles Darwin Research Station in Galápagos. The project was supported by Vetenskapsrådet and Knut and Alice Wallenberg Foundation. The genome sequencing was performed by the SNP&SEQ Technology Platform, supported by Uppsala University and SciLifeLab. Computer resources for the bioinformatics analysis were supplied by the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX).

Author information




P.R.G. and B.R.G. collected the material. L.A., P.R.G. and B.R.G. conceived the study. L.A. and M.T.W. led the bioinformatic analysis of the data. S.L. and F.H. performed the bioinformatic analysis and experimental work. L.A., S.L., F.H., B.R.G. and P.R.G. wrote the paper with input from the other authors. All authors approved the manuscript before submission.

Corresponding author

Correspondence to Leif Andersson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Beak length and beak depth in six groups of G. scandens and G. fortis population, based on data presented in Supplementary Table 1.

Extended Data Fig. 2 Beak size (PC1) and beak shape (PC2) of the six groups of finches.

In a Principal Components analysis of beak length, depth and width of all individuals, 30 per group (29 only for early G. fortis), PC1 explained 64.5% of the variation and PC2 explained an additional 31.4%. The combined groups were heterogeneous in PC1 (F5,173 = 27.6, P < 0.0001) and PC2 scores (F5,173 = 497.3, P < 0.0001), more strongly in PC2 (adj R2 = 0.93) than in PC1 (adj R2 = 0.43). All pairwise differences in PC2 scores between groups of the same species are statistically significant at P < 0.0001, except for G. scandens early and late pointed groups at P = 0.02. The two groups that contain putatively introgressed individuals, G. fortis late pointed and G. scandens late blunt, do not differ in beak shape (P = 0.72).

Extended Data Fig. 3

Allele frequency of a diagnostic SNP at nucleotide position 16,851 in mtDNA in different groups of G. scandens and G. fortis from Daphne Major.

Extended Data Fig. 4 Normalized genetic distance in four late groups of Darwin’s finches along chromosomes 1, 4 and Z.

Nei’s genetic distance of every 50 kb non-overlapping window was calculated across the genome and only the windows showing relatively high divergence between the early groups (delta genetic distance > 0.15) are presented. Each value was normalized by the difference of the genetic distances between the G. scandens early pointed (SEP) and G. fortis early blunt (FEB) groups.

Extended Data Fig. 5 Density of allele frequencies and their correlation among six groups of Darwin’s finches.

(a) Density of allele frequency in each group across autosomes and (b) on the Z chromosome; the peak density is marked with a dashed blue line. (c) Pairwise correlation of allele frequencies among groups on autosomes and (d) on the Z chromosome. Correlation coefficients were calculated using Pearson’s correlation test, and all the values were below a significance level of 0.01.

Extended Data Fig. 6

Relative degree of introgression in G. scandens late blunt Delta FST(SLB) and G. scandens late pointed Delta FST(SLP) along the genome.

Extended Data Fig. 7

Correlation between two delta FST measures on each chromosome, and delta FST(SLB) ≈ delta FST(SLP) is expected in regions of the genome unaffected by introgression, which is indicated as a red dashed line in each plot together with the Pearson’s correlation coefficient.

Extended Data Fig. 8

Frequency of the ALX1 blunt (B) allele in each of the six groups of G. fortis and G. scandens on Daphne Major based on individual genotyping (n = 30 for each pool).

Extended Data Fig. 9

Genotypes for the most significantly differentiated SNPs (n = 6,730) (FST > 0.6) from region 2 in Fig. 4a among individually sequenced ground finches (Geospiza spp.).

Supplementary information

Reporting Summary

Supplementary Table 1

Morphological data for the G. fortis and G. scandens individuals included in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamichhaney, S., Han, F., Webster, M.T. et al. Female-biased gene flow between two species of Darwin’s finches. Nat Ecol Evol 4, 979–986 (2020). https://doi.org/10.1038/s41559-020-1183-9

Download citation