Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduced ecological resilience jeopardizes zero loss of biodiversity using the mitigation hierarchy

Abstract

One proposal for the Convention on Biological Diversity’s post-2020 strategic plan is ‘zero loss’ of natural habitats. However, the feasibility of zero loss was questioned during the Trondheim Conference for Biodiversity, and it was suggested that biodiversity losses are instead balanced by compensatory efforts (that is, ‘no net loss’). The focus on net outcomes is echoed by separate calls for a global mitigation hierarchy to deliver no net biodiversity loss and accommodate both conservation and development goals. Here we show that ‘no net loss’ is not the same as ‘zero loss’. We use a delayed differential model of nonlinear habitat dynamics to demonstrate how applying the mitigation hierarchy for net biodiversity outcomes will lead to biodiversity declines by midcentury. Delayed compensation of human impacts reduces ecological resilience and causes prolonged biodiversity losses. These effects are greatest when impacts are large and compensation delays are long. Our results support the use of fixed targets, rather than net outcomes, as part of the post-2020 biodiversity framework.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Habitat loss from human impacts affects ecological dynamics.
Fig. 2: The mitigation of habitat loss in a system with self-reinforcing vegetated and bare states.
Fig. 3: The effect of mitigation multipliers on achieving zero loss.

Data availability

Simulation outputs are available at: https://doi.org/10.6084/m9.figshare.11841906.

Code availability

All R scripts are available at https://doi.org/10.6084/m9.figshare.11841906.

References

  1. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Google Scholar 

  2. Making Biodiversity Matter. Knowledge and Know-how for the post-2020 Global Biodiversity Framework. Report to the Co-chairs. The Ninth Trondheim Conference on Biodiversity (Trondheim Conferences on Biodiversity, 2019).

  3. Open-ended Working Group on the post-2020 Global Biodiversity Framework Zero Draft of the post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).

  4. Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Addison, P. F. E. & Bull, J. W. Conservation accord: corporate incentives. Science 360, 1195–1196 (2018).

    CAS  PubMed  Google Scholar 

  6. Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).

    PubMed  Google Scholar 

  7. Gibbons, P., Macintosh, A., Constable, A. L. & Hayashi, K. Outcomes from 10 years of biodiversity offsetting. Glob. Change Biol. 24, e643–e654 (2018).

    Google Scholar 

  8. zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).

    Google Scholar 

  9. Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    Google Scholar 

  10. Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

    Google Scholar 

  11. van de Leemput, I. A., Dakos, V., Scheffer, M. & van Nes, E. H. Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018).

    PubMed  Google Scholar 

  12. Scheffer, M. et al. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  13. Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).

    Google Scholar 

  14. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    CAS  PubMed  Google Scholar 

  15. Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    PubMed  Google Scholar 

  16. Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    PubMed  Google Scholar 

  17. Meyer, K. et al. Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics. Nat. Sustain. 1, 671–678 (2018).

    Google Scholar 

  18. Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J. & King, L. Conceptualizing forest degradation. Trends Ecol. Evol. 30, 622–632 (2015).

    PubMed  Google Scholar 

  19. Maron, M. et al. Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biol. Conserv. 155, 141–148 (2012).

    Google Scholar 

  20. Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy? Ecol. Appl. 24, 617–632 (2014).

    PubMed  Google Scholar 

  21. Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 53, 1686–1693 (2016).

    Google Scholar 

  22. Gonçalves, B., Marques, A., Soares, A. M. V. D. M. & Pereira, H. M. Biodiversity offsets: from current challenges to harmonized metrics.Curr. Opin. Environ. Sustain. 14, 61–67 (2015).

    Google Scholar 

  23. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 277, 1043–1048 (1990).

    Google Scholar 

  24. Janssen, R. H. H., Meinders, M. B. J., van Nes, E. H. & Scheffer, M. Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation-climate system. Global Change Biol. 14, 1104–1112 (2008).

    Google Scholar 

  25. Maron et al. Locking in loss: baselines of decline in Australian biodiversity offset policies. Biol. Conserv. 192, 504–512 (2015).

    Google Scholar 

  26. Maron, M. et al. Conservation: stop misuse of biodiversity offsets. Nature 523, 401–403 (2015).

    CAS  PubMed  Google Scholar 

  27. Simmonds, J. S. et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. https://doi.org/10.1111/conl.12695 (2019).

  28. Wu, P. P. et al. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience. Nat. Commun. 8, 1263 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Moilanen, A. & Laitila, J. Indirect leakage leads to a failure of avoided loss biodiversity offsetting. J. Appl. Ecol. 53, 106–111 (2016).

    PubMed  Google Scholar 

  30. Buschke, F. T. Biodiversity trajectories and the time needed to achieve no net loss through averted-loss biodiversity offsets. Ecol. Model. 352, 54–57 (2017).

    Google Scholar 

  31. Gibbons, P. et al. A loss‐gain calculator for biodiversity offsets and the circumstances in which no net loss is feasible. Conserv. Lett. 9, 252–259 (2016).

    Google Scholar 

  32. Bull, J. W., Lloyd, S. P. & Strange, N. Implementation gap between theory and practice of biodiversity offset multipliers. Conserv. Lett. 10, 656–669 (2017).

    Google Scholar 

  33. Rossberg, A. On the mathematics of sustainability. Nat. Sustain. 1, 615–616 (2018).

    Google Scholar 

  34. Chapin-Kramer, R. et al. Spatial patterns of agricultural expansion determine effects on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).

    Google Scholar 

  35. Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Google Scholar 

  36. Gordon, A. Assessing the impacts of biodiversity offset policies. Environ. Modell. Softw. 26, 1481–1488 (2011).

    Google Scholar 

  37. Buschke, F. T. & Sinclair, S. P. Adding ecological and evolutionary processes to restoration biodiversity offset models using neutral theory. Divers. Distrib. 25, 1351–1361 (2019).

    Google Scholar 

  38. O’Brien, S. H., Cook, A. S. C. P. & Robinson, R. A. Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions. J. Environ. Manag. 201, 163–171 (2017).

    Google Scholar 

  39. Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 5–60 (2006).

    Google Scholar 

  40. Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).

    CAS  PubMed  Google Scholar 

  41. Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    PubMed  Google Scholar 

  42. Henderson, K. A., Bauch, C. T. & Anand, M. Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proc. Natl Acad. Sci. USA 113, 14552–14559 (2016).

    CAS  PubMed  Google Scholar 

  43. Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).

    Google Scholar 

  44. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

Download references

Acknowledgements

We thank M. Maron and J. Bull for their comments.

Author information

Authors and Affiliations

Authors

Contributions

F.B. designed the study and ran the simulations, with input from S.B. Both authors wrote the manuscript.

Corresponding author

Correspondence to Falko Buschke.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Section 1: Nonlinear dynamics of delayed mitigation for a population with a carrying capacity and Allee effects. Supplementary Section 2: Choice of values and sensitivity analysis for free parameters in the time-delayed mitigation model.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buschke, F., Brownlie, S. Reduced ecological resilience jeopardizes zero loss of biodiversity using the mitigation hierarchy. Nat Ecol Evol 4, 815–819 (2020). https://doi.org/10.1038/s41559-020-1177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1177-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing