The long-term restoration of ecosystem complexity

Abstract

Multiple large-scale restoration strategies are emerging globally to counteract ecosystem degradation and biodiversity loss. However, restoration often remains insufficient to offset that loss. To address this challenge, we propose to focus restoration science on the long-term (centuries to millennia) re-assembly of degraded ecosystem complexity integrating interaction network and evolutionary potential approaches. This approach provides insights into eco-evolutionary feedbacks determining the structure, functioning and stability of recovering ecosystems. Eco-evolutionary feedbacks may help to understand changes in the adaptive potential after disturbance of metacommunity hub species with core structural and functional roles for their use in restoration. Those changes can be studied combining a restoration genomics approach based on whole-genome sequencing with replicated space-for-time substitutions linking changes in genetic variation to functions or traits relevant to the establishment of evolutionarily resilient communities. This approach may set the knowledge basis for future tools to accelerate the restoration of ecosystems able to adapt to ongoing global changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global restoration initiatives.

European Union, 1995–2020 (European Commission logo) under a Creative Commons CC BY 4.0 licence; New York Declaration on Forests Global Platform, United Nations Development Programme (New York Declaration on Forests Global Platform symbol); Convention on Biological Diversity (Convention on Biological Diversity symbol and Aichi Biodiversity Target symbols); United Nations (UN/SDG; SDG symbol)

Fig. 2: Meta-analyses on restoration performance.

The Integration and Application Network, University of Maryland Center for Environmental Science (background landscape elements; ian.umces.edu/symbols/)

Fig. 3: Measures of recovery through time.
Fig. 4: Approaches to analyse genomic variation.
Fig. 5: Future steps to improve restoration science and derived management actions.

The Integration and Application Network, University of Maryland Center for Environmental Science (background landscapes elements, tree and insect images; ian.umces.edu/symbols/)

References

  1. 1.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

  2. 2.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

  3. 3.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  4. 4.

    Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).

  5. 5.

    United Nations Environment Program. New UN Decade on Ecosystem Restoration offers unparalleled opportunity for job creation, food security and addressing climate change. United Nations Environment Program Press Release (01 March 2019); https://go.nature.com/2wMjUZt

  6. 6.

    Progress on the New York Declaration on Forests - Achieving Collective Forest Goals. Updates on Goals 1-10 (Climate Focus, 2016).

  7. 7.

    COP 11 Decision X1/16. Ecosystem Restoration (Convention on Biological Diversity, 2012).

  8. 8.

    Our Life Insurance, Our Natural Capital: an EU Biodiversity Strategy to 2020 2011/2307(INI) (European Parliament, 2012).

  9. 9.

    Zedler, J. B. & Callaway, J. C. Tracking wetland restoration: do mitigation sites follow desired trajectories? Restor. Ecol. 7, 69–73 (1999).

  10. 10.

    Zedler, J. B. Progress in wetland restoration ecology. Trends Ecol. Evol. 15, 402–407 (2000).

  11. 11.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

  12. 12.

    Cardinale, B., Duffy, J. & Gonzalez, A. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  13. 13.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

  14. 14.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).

  15. 15.

    Forup, M. L., Henson, K. S. E., Craze, P. G. & Memmott, J. The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 45, 742–752 (2008).

  16. 16.

    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

  17. 17.

    Ribeiro da Silva, F. et al. The restoration of tropical seed dispersal networks. Restor. Ecol. 23, 852–860 (2015).

  18. 18.

    Society for Ecological Restoration International, Science and Policy Working Group The SER Primer on Ecological Restoration (Society for Ecological Restoration, 2004).

  19. 19.

    Keenleyside, K., Dudley, N., Cairns, S., Hall, C. & Stolton, S. Ecological Restoration for Protected Areas: Principles, Guidelines and Best Practices (IUCN, 2012).

  20. 20.

    Hastings, A. Timescales and the management of ecological systems. Proc. Natl Acad. Sci. USA 113, 14568–14573 (2016).

  21. 21.

    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

  22. 22.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).

  23. 23.

    Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025 (2007).

  24. 24.

    Wardle, D. A., Bardgett, R. D., Callaway, R. M. & van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1278 (2011).

  25. 25.

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

  26. 26.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

  27. 27.

    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).

  28. 28.

    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

  29. 29.

    Hackett, T. D. et al. Reshaping our understanding of species’ roles in landscape-scale networks. Ecol. Lett. 22, 1367–1377 (2019).

  30. 30.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

  31. 31.

    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).

  32. 32.

    Beckett, J. S. & Hywel, T. P. Williams. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus 3, 20130033 (2013).

  33. 33.

    Rohr, R. P. & Bascompte, J. Components of phylogenetic signal in antagonistic and mutualistic networks. Am. Nat. 184, 556–564 (2014).

  34. 34.

    Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).

  35. 35.

    Raimundo, R. L. G., Guimarães, P. R. & Evans, D. M. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33, 664–675 (2018).

  36. 36.

    Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).

  37. 37.

    Toju, H. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1, 0024 (2017).

  38. 38.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

  39. 39.

    Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38, 380–392 (2015).

  40. 40.

    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

  41. 41.

    Perez-Mendez, N., Jordano, P., Garcia, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).

  42. 42.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

  43. 43.

    Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017).

  44. 44.

    Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).

  45. 45.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

  46. 46.

    Montoya, D. et al. Trade-offs in provisioning and stability of multiple ecosystem services in agroecosystems. Ecol. Appl. 29, e01853 (2018).

  47. 47.

    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

  48. 48.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

  49. 49.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

  50. 50.

    Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).

  51. 51.

    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).

  52. 52.

    Sarrazin, F. & Lecomte, J. Evolution in the Anthropocene. Science 351, 922–923 (2016).

  53. 53.

    Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation—evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).

  54. 54.

    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).

  55. 55.

    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).

  56. 56.

    Harrisson, K. A., Pavlova, A., Telonis-Scott, M. & Sunnucks, P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol. Appl. 7, 1008–1025 (2014).

  57. 57.

    Fraser, H. B. et al. Systematic detection of polygenic cis-regulatory evolution. PLoS Genet. 7, e1002023 (2011).

  58. 58.

    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).

  59. 59.

    De Kort, H. & Honnay, O. in Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts (ed. Pontarotti, P.) 313–327 (Springer, 2017).

  60. 60.

    Fuentes-Pardo, A. P. & Ruzzante, D. E. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).

  61. 61.

    Chandler, C. H., Chari, S. & Dworkin, I. Does your gene need a background check? How genetic background impacts the analysis of muta- tions, genes, and evolution. Trends Genet. 29, 358–366 (2013).

  62. 62.

    Le Rouzic, A. & Carlborg, Ö. Evolutionary potential of hidden genetic variation. Trends Ecol. Evol. 23, 33–37 (2008).

  63. 63.

    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

  64. 64.

    Ekblom, R. & Wolf, J. B. W. A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. 7, 1026–1042 (2014).

  65. 65.

    Lin, M. F. et al. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. Genome Res. 6, 1916–1928 (2011).

  66. 66.

    Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).

  67. 67.

    Wagner, A. Genotype networks shed light on evolutionary constraints. Trends Ecol. Evol. 26, 577–584 (2011).

  68. 68.

    Rey, O., Danchin, E., Mirouze, M., Loot, C. & Blanchet, S. Adaptation to global change: a transposable element-epigenetics perspective. Trends Ecol. Evol. 31, 514–526 (2016).

  69. 69.

    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).

  70. 70.

    Balaguer, L., Escudero, A., Martín-Duque, J. F., Mola, I. & Aronson, J. The historical reference in restoration ecology: re-defining a cornerstone concept. Biol. Conserv. 176, 12–20 (2014).

  71. 71.

    Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).

  72. 72.

    Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).

  73. 73.

    Hendry, A. P. et al. Evolutionary principles and their practical application. Evol. Appl. 4, 159–183 (2011).

  74. 74.

    Hendry, A. P. Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity 111, 456–466 (2013).

  75. 75.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

  76. 76.

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2014).

  77. 77.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).

  78. 78.

    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).

  79. 79.

    Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).

  80. 80.

    Arrizabalaga-Escudero, A. et al. Trophic requirements beyond foraging habitats: the importance of prey source habitats in bat conservation. Biol. Conserv. 191, 512–519 (2015).

  81. 81.

    Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).

  82. 82.

    Mccrackin, M. L., Jones, H. P., Jones, P. C. & Moreno-Mateos, D. Recovery of lakes and coastal marine ecosystems from eutrophication: a global meta-analysis. Limnol. Oceanogr. 62, 507–518 (2017).

  83. 83.

    Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE 12, e0171368 (2017).

  84. 84.

    Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, Inc., 2006).

  85. 85.

    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

  86. 86.

    Pimm, S. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

  87. 87.

    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

  88. 88.

    Gange, A. C., Stagg, P. G. & Ward, L. K. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol. Lett. 5, 11–15 (2002).

  89. 89.

    Ngosong, C., Gabriel, E. & Ruess, L. Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia 57, 171–179 (2014).

  90. 90.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

  91. 91.

    Macfadyen, S., Craze, P. G., Polaszek, A., van Achterberg, K. & Memmott, J. Parasitoid diversity reduces the variability in pest control services across time on farms. Proc. R. Soc. B Biol. Sci. 278, 3387–3394 (2011).

  92. 92.

    Smith, S. & Read, D. Mycorrhizal Symbiosis (Academic Press, 2008).

  93. 93.

    Low, W. Y. et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat. Commun. 10, 260 (2019).

  94. 94.

    Jones, M. R. & Good, J. M. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 25, 185–202 (2016).

  95. 95.

    Clement, C. R., de Cristo-Araújo, M., d’Eeckenbrugge, G. C., Pereira, A. A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity 2, 72–106 (2010).

  96. 96.

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

  97. 97.

    Ross, N. J. Modern tree species composition reflects ancient Maya ‘forest gardens’ in northwest Belize. Ecol. Appl. 21, 75–84 (2011).

  98. 98.

    Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).

Download references

Acknowledgements

D.M.-M. has been funded for this research by the Spanish Ministry of Economy and Competiveness through Societal Challenge Program (grant no. CGL2015-70452-R) and María de Maeztu excellence accreditation MDM-2017-0714. A.A. was funded by Lundbeckfonden (grant no. R250-2017-1351). E.M. is supported through a NWO-Veni grant (863.15.021). A.R.-U. was funded by an Environmental Fellowship Program from Fundación “Tatiana Pérez de Guzmán el Bueno” in 2016. D.M. was funded by the French ANR through LabEx TULIP (ANR-10-LABX-41; ANR-11-IDEX-002-02) and by the European Research Council (FRAGCLIM Consolidator Grant no. 726176).

Author information

Affiliations

Authors

Contributions

D.M.-M. and A.A. conceived the idea and wrote the manuscript. D.M., E.M., A.R.-U. and W.H.v.d.P. wrote the manuscript.

Corresponding author

Correspondence to David Moreno-Mateos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreno-Mateos, D., Alberdi, A., Morriën, E. et al. The long-term restoration of ecosystem complexity. Nat Ecol Evol 4, 676–685 (2020). https://doi.org/10.1038/s41559-020-1154-1

Download citation