Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental evidence for effects of sexual selection on condition-dependent mutation rates

Abstract

Sexual selection depletes genetic variation but depleted genetic variation limits the efficacy of sexual selection—a long-standing enigma known as the lek paradox. Here we offer a twist to this paradox by showing that sexual selection and the generation of new genetic variation via mutation may be entangled in an evolutionary feedback loop. We induced DNA damage in the germline of male seed beetles evolved under regimes manipulating the opportunity for natural and sexual selection, and quantified de novo mutations in F2–F7 generations by measuring mutation load. Sexually selected males passed on smaller loads, suggesting that selection for male quality not only purges segregating deleterious alleles, but can also reduce the rate at which such alleles originate de novo. However, when engaging in socio-sexual interactions, males evolved exclusively under sexual selection transferred greater loads, suggesting that trade-offs between naturally and sexually selected fitness components can increase mutation rate. These results offer causality to the widely observed male mutation bias and have implications for the maintenance of genetic variation in fitness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: De novo dominant mutation load passed on to F2 offspring.
Fig. 2: De novo recessive mutation load passed on to offspring generations F3–F7 measured as lineage extinction during successive full-sibling mating.

Similar content being viewed by others

Data availability

The data are available at https://doi.org/10.6084/m9.figshare.c.4838352.v1. Generated empirical data are presented in Figs. 1 and 2, Extended Data Figs. 1–5 and Supplementary Figs. 1–5.

Code availability

R code for MCMC models is available in the Supplementary information.

References

  1. Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).

  2. Whitlock, M. C. & Agrawal, A. F. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63, 569–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Janicke, T., Ritchie, M. G., Morrow, E. H. & Marie-Orleach, L. Sexual selection predicts species richness across the animal kingdom. Proc. R. Soc. B 285, 20180173 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. Sexual conflict promotes speciation in insects. Proc. Natl Acad. Sci. USA 97, 10460–10464 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martins, M. J. F., Puckett, T. M., Lockwood, R., Swaddle, J. P. & Hunt, G. High male sexual investment as a driver of extinction in fossil ostracods. Nature 556, 366–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411, 692–695 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75, 21–64 (2007).

    Article  Google Scholar 

  8. Bonduriansky, R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 76, 305–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Arnqvist, G. & Nilsson, T. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).

    Article  PubMed  Google Scholar 

  11. Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition-dependent traits. Proc. R. Soc. Lond. B 263, 1415–1421 (1996).

    Article  Google Scholar 

  12. Hunt, J., Bussière, L. F., Jennions, M. D. & Brooks, R. What is genetic quality? Trends Ecol. Evol. 19, 329–333 (2004).

    Article  PubMed  Google Scholar 

  13. Pomiankowski, A. & Møller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260, 21–29 (1995).

    Article  Google Scholar 

  14. Kotiaho, J. S., LeBas, N. R., Puurtinen, M. & Tomkins, J. L. On the resolution of the lek paradox. Trends Ecol. Evol. 23, 1–3 (2008).

    Article  PubMed  Google Scholar 

  15. Turelli, M. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Popul. Biol. 25, 138–193 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Walsh, B. & Blows, M. W. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).

    Article  Google Scholar 

  17. Andersson, M. & Simmons, L. W. Sexual selection and mate choice. Trends Ecol. Evol. 21, 296–302 (2006).

    Article  PubMed  Google Scholar 

  18. Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. Lond. B 274, 1–10 (2007).

    Article  CAS  Google Scholar 

  19. Sayres, M. A. W. & Makova, K. D. Genome analyses substantiate male mutation bias in many species. BioEssays 33, 938–945 (2011).

    Article  PubMed Central  Google Scholar 

  20. Haldane, J. B. S. The rate of spontaneous mutation of a human gene. J. Genet. 31, 317 (1935).

    Article  Google Scholar 

  21. Ségurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation rate variation in the human germline. Annu. Rev. Genomics Hum. Genet. 15, 47–70 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Grégoire, M.-C. et al. Male-driven de novo mutations in haploid germ cells. Mol. Hum. Reprod. 19, 495–499 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Clutton-Brock, T. H. & Parker, G. A. Potential reproductive rates and the operation of sexual selection. Q. Rev. Biol. 67, 437–456 (1992).

    Article  Google Scholar 

  24. Schärer, L., Rowe, L. & Arnqvist, G. Anisogamy, chance and the evolution of sex roles. Trends Ecol. Evol. 27, 260–264 (2012).

    Article  PubMed  Google Scholar 

  25. Blumenstiel, J. P. Sperm competition can drive a male-biased mutation rate. J. Theor. Biol. 249, 624–632 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Møller, A. & Cuervo, J. Sexual selection, germline mutation rate and sperm competition. BMC Evol. Biol. 3, 6 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98, 198–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Cotton, S. Condition‐dependent mutation rates and sexual selection. J. Evol. Biol. 22, 899–906 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Maklakov, A. A. & Immler, S. The expensive germline and the evolution of ageing. Curr. Biol. 26, R577–R586 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Aitken, R. J. & De Iuliis, G. N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Dowling, D. K. & Simmons, L. W. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B 276, 1737–1745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedberg, E. C., Walker, G. C., Siede, W. & Wood, R. D. DNA Repair and Mutagenesis (American Society for Microbiology Press, 2005).

  33. Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. BioEssays 22, 1057–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Immler, S. & Otto, S. P. The evolutionary consequences of selection at the haploid gametic stage. Am. Nat. 192, 241–249 (2018).

    Article  PubMed  Google Scholar 

  35. Ball, B. A. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 107, 257–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: evidence for condition-dependent DNA repair. PLoS Biol. 6, e30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sharp, N. P. & Agrawal, A. F. Evidence for elevated mutation rates in low-quality genotypes. Proc. Natl Acad. Sci. USA 109, 6142–6146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berger, D., Stångberg, J., Grieshop, K., Martinossi-Allibert, I. & Arnqvist, G. Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proc. R. Soc. B 284, 20171721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zahavi, A. Mate selection—a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    Article  CAS  PubMed  Google Scholar 

  40. Prokop, Z. M., Michalczyk, Ł., Drobniak, S. M., Herdegen, M. & Radwan, J. Meta-analysis suggests choosy females get sexy sons more than “good genes”: meta-analysis of female choice benefits. Evolution 66, 2665–2673 (2012).

    Article  PubMed  Google Scholar 

  41. Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: ‘The Sexy Son Hypothesis’. Am. Nat. 113, 201–208 (1979).

    Article  Google Scholar 

  42. Agrawal, A. F. & Whitlock, M. C. Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43, 115–135 (2012).

    Article  Google Scholar 

  43. Agrawal, A. F. Genetic loads under fitness-dependent mutation rates: load with fitness-dependent mutation rates. J. Evol. Biol. 15, 1004–1010 (2002).

    Article  Google Scholar 

  44. Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch, M. et al. Perspective: spontaneous deleterious mutation. Evolution 53, 645–663 (1999).

    Article  PubMed  Google Scholar 

  46. Ramm, S. A., Schärer, L., Ehmcke, J. & Wistuba, J. Sperm competition and the evolution of spermatogenesis. Mol. Hum. Reprod. 20, 1169–1179 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. González-Marín, C., Gosálvez, J. & Roy, R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13, 14026–14052 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Martinossi‐Allibert, I., Thilliez, E., Arnqvist, G. & Berger, D. Sexual selection, environmental robustness and evolutionary demography of maladapted populations: a test using experimental evolution in seed beetles. Evol. Appl. 12, 1487–1502 (2019).

    Article  Google Scholar 

  49. Baur, J., Nsanzimana, Jd’Amour & Berger, D. Sexual selection and the evolution of male and female cognition: a test using experimental evolution in seed beetles*. Evolution 73, 2390–2400 (2019).

    Article  PubMed  Google Scholar 

  50. Eady, P. E. Why do male Callosobruchus maculatus beetles inseminate so many sperm? Behav. Ecol. Sociobiol. 36, 25–32 (1995).

    Article  Google Scholar 

  51. Yamane, T., Goenaga, J., Rönn, J. L. & Arnqvist, G. Male seminal fluid substances affect sperm competition success and female reproductive behavior in a seed beetle. PLoS ONE 10, e0123770 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Berger, D. et al. Intralocus sexual conflict and the tragedy of the commons in seed beetles. Am. Nat. 188, E98–E112 (2016).

    Article  PubMed  Google Scholar 

  53. von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1–12 (1999).

    Article  Google Scholar 

  54. Shabalina, S. A., Yampolsky, L. Y. & Kondrashov, A. S. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl Acad. Sci. USA 94, 13034–13039 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simmons, L. W. Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav. Ecol. 23, 168–173 (2012).

    Article  Google Scholar 

  56. Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm? Genetica 134, 5–19 (2007).

    PubMed  Google Scholar 

  57. Hosken, D. J., Garner, Tw. J., Tregenza, T., Wedell, N. & Ward, P. I. Superior sperm competitors sire higher-quality young. Proc. R. Soc. Lond. B 270, 1933–1938 (2003).

    Article  CAS  Google Scholar 

  58. Berger, D. et al. Sexually antagonistic selection on genetic variation underlying both male and female same-sex sexual behavior. BMC Evol. Biol. 16, 88 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Immonen, E., Rönn, J., Watson, C., Berger, D. & Arnqvist, G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J. Evol. Biol. 29, 360–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Sharp, N. P. & Agrawal, A. F. Low genetic quality alters key dimensions of the mutational spectrum. PLoS Biol. 14, e1002419 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Silva, W. T. A. F. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. delBarco-Trillo, Javier et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B 283, 20152708 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Johnson, T. & Barton, N. Theoretical models of selection and mutation on quantitative traits. Phil. Trans. R. Soc. B 360, 1411–1425 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  65. Kondrashov, A. S. Selection against harmful mutations in large sexual and asexual populations. Genet. Res. 40, 325 (1982).

    Article  CAS  PubMed  Google Scholar 

  66. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, 1952).

  67. Baer, C. F. Does mutation rate depend on itself. PLoS Biol. 6, e52 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Beck, C. W. & Promislow, D. E. L. Evolution of female preference for younger males. PLoS ONE 2, e939 (2007).

  69. Ruan, Y., Wang, H., Chen, B., Wen, H. & Wu, C.-I. Mutations beget more mutations—rapid evolution of mutation rate in response to the risk of runaway accumulation. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz283 (2019).

  70. Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85, 897–934 (2010).

    Article  PubMed  Google Scholar 

  71. Haldane, J. B. S. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).

    Article  Google Scholar 

  72. Kimura, M. On the evolutionary adjustment of spontaneous mutation rates*. Genet. Res. 9, 23–34 (1967).

    Article  Google Scholar 

  73. Kokko, H. Fisherian and “good genes” benefits of mate choice: how (not) to distinguish between them. Ecol. Lett. 4, 322–326 (2001).

    Article  Google Scholar 

  74. Bonduriansky, R. & Day, T. The evolution of static allometry in sexually selected traits. Evolution 57, 2450–2458 (2003).

    Article  PubMed  Google Scholar 

  75. Shaw, F. H. & Baer, C. F. Fitness-dependent mutation rates in finite populations. J. Evol. Biol. 24, 1677–1684 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Arnheim, N. & Calabrese, P. Germline stem cell competition, mutation hot spots, genetic disorders, and older fathers. Annu. Rev. Genomics Hum. Genet. 17, 219–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fox, C. W. Multiple mating, lifetime fecundity and female mortality of the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Funct. Ecol. 7, 203–208 (1993).

    Article  Google Scholar 

  79. Crudgington, H. S. & Siva-Jothy, M. T. Genital damage, kicking and early death. Nature 407, 855–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hotzy, C. & Arnqvist, G. Sperm competition favors harmful males in seed beetles. Curr. Biol. 19, 404–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Gay, L., Hosken, D. J., Vasudev, R., Tregenza, T. & Eady, P. E. Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus. J. Evol. Biol. 22, 1143–1150 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Berger, D. et al. Intralocus sexual conflict and environmental stress. Evolution 68, 2184–2196 (2014).

    Article  PubMed  Google Scholar 

  83. Grieshop, K. & Arnqvist, G. Sex-specific dominance reversal of genetic variation for fitness. PLoS Biol. 16, e2006810 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Baur, J., d’Amour, J. & Berger, D. Sexual selection and the evolution of male and female cognition: a test using experimental evolution in seed beetles. Evolution 73, 2390–2400 (2019).

    Article  PubMed  Google Scholar 

  85. Daly, M. J. Death by protein damage in irradiated cells. DNA Repair 11, 12–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maklakov, A. A., Immler, S., Lovlie, H., Flis, I. & Friberg, U. The effect of sexual harassment on lethal mutation rate in female Drosophila melanogaster. Proc. R. Soc. B 280, 20121874 (2012).

    Article  Google Scholar 

  88. Svetec, N., Cridland, J. M., Zhao, L. & Begun, D. J. The adaptive significance of natural genetic variation in the DNA damage response of Drosophila melanogaster. PLoS Genet. 12, e1005869 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  90. Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-14 (2019); https://CRAN.R-project.org/package=coxme

Download references

Acknowledgements

The authors thank J. Liljestrand-Rönn, K. Gotthard and T. Sangsuwan for help in the laboratory and for providing access to the radiation source. This work has also benefitted greatly from discussions with members of the seed beetle research group and C. Rueffler at Uppsala University. This work was supported by a grant from the Swedish Research Council VR (no. 2015-05223) to D.B.

Author information

Authors and Affiliations

Authors

Contributions

D.B. conceived the research and general experimental design. J.B. developed details of the design, collected and analysed data and produced figures with input and assistance from D.B. D.B. and J.B. wrote the manuscript.

Corresponding author

Correspondence to David Berger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental design used to measure germline maintenance via de novo dominant mutation load.

Illustration of the experimental procedures used for the assessment of dominant mutation load. After 29 generations of experimental evolution, all lines were maintained for 1 generation in a common garden under a polygamous mating regime to counteract potential parental (non-genetic) effects from the mating regime. Freshly emerged virgin males (0–24h after eclosion) were either isolated in 0.3ml Eppendorf tubes (five isolated beetles in one Petri dish) or kept together in groups of five together with five standard females, allowed to interact and mate freely, for 23 hours. Within one hour after the socio-sexual treatment, beetles were exposed to 25Gy of gamma radiation (30 minutes of exposure). Subsequently, all beetles, including control individuals that only underwent the socio-sexual but not the irradiation treatment, were mated with a standard female once to remove putatively damaged ejaculate and to be challenged to regenerate a new ejaculate. After 25 hours, all beetles were mated once with a standard female. To exclude the possibility of putative parental effects caused by irradiation, dominant mutation load was estimated by counts of adult F2 offspring. To that end, F1 offspring of irradiated and control males were propagated using a Middleclass Neighbourhood crossing scheme, effectively relaxing selection on all but the unconditionally lethal dominant mutations. Inbreeding was avoided by making crosses among F1 families applying a round-robin mating design.

Extended Data Fig. 2 Experimental design used to measure germline maintenance via de novo recessive mutation load.

Illustration of the inbreeding protocol used to assess recessive de novo mutation load. To exclude the possibility that effects of genetic background and possible non-genetic parental effects affected results, recessive lethals were scored on backgrounds constructed by crosses between alternative combinations of socio-sexual treatments (isolated virgins or reproducing in groups) and selection regimes (N- or S-males), equalizing the mean contribution of each original background in the inbred lineages. We recorded lineage extinction rate over five generations after the onset of inbreeding as an estimate of recessive mutation load.

Extended Data Fig. 3 Mating behavior.

Mating, mounting and locomotor activity of the respective regimes (NS: yellow, N: red, S: blue) as a function of time over the three periods of observation. The first vertical dotted line indicates the separation between the initial high mating-frequency phase immediately after putting males and females into contact and the subsequent phase of behaviour. The second and third vertical dotted lines indicate the beginning of the second (2.5h after initiation) and third (daybreak of the following day) observation period.

Extended Data Fig. 4 Ejaculate production.

Line specific (light and dark lines within each regime) relative ejaculate weight for mating two and three for beetles kept in isolation for ejaculate regeneration (solid lines) or in social groups of five males (dashed lines) (means ± 95% confidence limits).

Extended Data Fig. 5 Sperm production.

In a) the number of sperm transferred at the third mating and at the fourth mating following a 25h recovery period during which males were kept isolated, for NS (yellow), N (red) and S (blue) males. Shown are means per replicate line. In b) the number of sperm transferred at the third mating and at the fourth mating following a recovery period of 7h during which males were kept isolated (solid lines) or in groups of three (dashed lines). In c) the difference between the number of transferred sperm in mating 4 and 3 for replicate evolution lines and social treatment. NS males transferred more sperm overall (a). S-males, evolved under only sexual selection, show a different response to social treatment than N- and NS-males that had evolved under natural selection (c).

Supplementary information

Supplementary Information

Supplementary 1–5, including experimental design, analyses code, results and figs.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baur, J., Berger, D. Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nat Ecol Evol 4, 737–744 (2020). https://doi.org/10.1038/s41559-020-1140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1140-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing