Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why conservation biology can benefit from sensory ecology

Abstract

Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms—masking, distracting and misleading—that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of ‘sensory danger zones’, hotspots of conservation concern where sensory pollutants overlap in space and time with an organism’s activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Three different mechanisms underlie ecological effects of sensory pollutants.
Fig. 2: Different sensory mechanisms ask for different solutions.

References

  1. 1.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  2. 2.

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  Google Scholar 

  3. 3.

    Lomolino, M. V., Channell, R., Perault, D. R. & Smith, G. A. in Biotic Homogenization (eds Lockwood, J. L. & McKinney, M. L.) 223–243 (Springer, 2001).

  4. 4.

    Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Swaddle, J. P. et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560 (2015).

    Article  Google Scholar 

  6. 6.

    Lürling, M. & Scheffer, M. Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 22, 374–379 (2007).

    Article  Google Scholar 

  7. 7.

    Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Buxton, R. T. et al. Noise pollution is pervasive in U.S. protected areas. Science 356, 531–533 (2017).

    Article  CAS  Google Scholar 

  9. 9.

    Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).

    Article  Google Scholar 

  10. 10.

    Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).

    Article  Google Scholar 

  11. 11.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    van Langevelde, F. et al. Declines in moth populations stress the need for conserving dark nights. Glob. Change Biol. 24, 925–932 (2018).

    Article  Google Scholar 

  13. 13.

    Francis, C. D., Ortega, C. P. & Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 19, 1415–1419 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 108259 (2020).

  15. 15.

    Stevens, M. Sensory Ecology, Behaviour, and Evolution (Oxford Univ. Press, 2013).

  16. 16.

    Denzinger, A. & Schnitzler, H. U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kevan, P. G., Chittka, L. & Dyer, A. G. Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J. Exp. Biol. 204, 2571–2580 (2001).

    CAS  PubMed  Google Scholar 

  18. 18.

    Clarke, D., Whitney, H., Sutton, G. & Robert, D. Detection and learning of floral electric fields by bumblebees. Science 340, 66–69 (2013).

    Article  CAS  Google Scholar 

  19. 19.

    Kleist, N. J., Guralnick, R. P., Cruz, A. & Francis, C. D. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds. Ecol. Appl. 27, 260–273 (2017).

    Article  Google Scholar 

  20. 20.

    Morris-Drake, A., Kern, J. M. & Radford, A. N. Cross-modal impacts of anthropogenic noise on information use. Curr. Biol. 26, R911–R912 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    McMahon, T. A., Rohr, J. R. & Bernal, X. E. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98, 1290–1299 (2017).

    Article  Google Scholar 

  22. 22.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    Van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl Acad. Sci. USA 114, 11175–11180 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Dominoni, D., Borniger, J. & Nelson, R. Light at night, clocks and health: from humans to wild organisms. Biol. Lett. 12, 20160015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Article  Google Scholar 

  26. 26.

    Fuller, R. A., Warren, P. H. & Gaston, K. J. Daytime noise predicts nocturnal singing in urban robins. Biol. Lett. 3, 368–370 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gomes, D. G. E. et al. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280 (2016).

    Article  CAS  Google Scholar 

  28. 28.

    Mason, J. T., McClure, C. J. W. & Barber, J. R. Anthropogenic noise impairs owl hunting behavior. Biol. Conserv. 199, 29–32 (2016).

    Article  Google Scholar 

  29. 29.

    Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).

    Article  Google Scholar 

  31. 31.

    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).

    Article  Google Scholar 

  32. 32.

    Fisher, H. S., Wong, B. B. M. & Rosenthal, G. G. Alteration of the chemical environment disrupts communication in a freshwater fish. Proc. R. Soc. B 273, 1187–1193 (2006).

    Article  CAS  Google Scholar 

  33. 33.

    Silber, K. The Physiological Basis of Behaviour (Routledge, 2005).

  34. 34.

    Ouyang, J. Q., Davies, S. & Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J. Exp. Biol. 221, jeb156893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dominoni, D., Goymann, W., Helm, B. & Partecke, J. Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): implications of city life for biological time-keeping of songbirds. Front. Zool. 10, 60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bruening, A., Hölker, F., Franke, S., Kleiner, W. & Kloas, W. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. Sci. Total Environ. 543, 214–222 (2016).

    Article  CAS  Google Scholar 

  37. 37.

    Kleist, N. J., Guralnick, R. P., Cruz, A., Lowry, C. A. & Francis, C. D. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc. Natl Acad. Sci. USA 115, 201709200 (2018).

    Article  CAS  Google Scholar 

  38. 38.

    Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zollinger, S. A., Goller, F. & Brumm, H. Metabolic and respiratory costs of increasing song amplitude in zebra finches. PLoS ONE 6, e23198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rolland, R. M. et al. Evidence that ship noise increases stress in right whales. Proc. R. Soc. B 279, 2363–2368 (2012).

    Article  Google Scholar 

  41. 41.

    O’Neill, J. S. et al. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25, R326–R327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chan, A. A. Y. H., Giraldo-Perez, P., Smith, S. & Blumstein, D. T. Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol. Lett. 6, 458–461 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Brown, J. S. & Kotler, B. P. in Foraging: Behavior and Ecology (eds Stephens, D. W., Brown, J. S. & Ydenberg, R. C.) 437–480 (Univ. Chicago Press, 2007).

  44. 44.

    Miedema, H. & Vos, H. Associations between self-reported sleep disturbance and environmental noise based on reanalyses of pooled data from 24 studies. Behav. Sleep Med. 5, 1–20 (2007).

    Article  Google Scholar 

  45. 45.

    Inger, R., Bennie, J., Davies, T. W. & Gaston, K. J. Potential biological and ecological effects of flickering artificial light. PLoS ONE 9, e98631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).

    Article  CAS  Google Scholar 

  47. 47.

    Rich, C. & Longcore, T. Artificial Night Lighting (Island Press, 2006).

  48. 48.

    Longcore, T. et al. Avian mortality at communication towers in the United States and Canada: which species, how many, and where? Biol. Conserv. 158, 410–419 (2013).

    Article  Google Scholar 

  49. 49.

    Rodríguez, A. et al. Artificial lights and seabirds: is light pollution a threat for the threatened Balearic petrels? J. Ornithol. 156, 893–902 (2015).

    Article  Google Scholar 

  50. 50.

    Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).

    Article  CAS  Google Scholar 

  51. 51.

    Hale, R. & Swearer, S. E. Ecological traps: current evidence and future directions. Proc. R. Soc. B 283, 20152647 (2016).

    Article  CAS  Google Scholar 

  52. 52.

    Geipel, I., Amin, B., Page, R. A. & Halfwerk, W. Does bat response to traffic noise support the misleading cue hypothesis? Behav. Ecol. 30, 1775–1781 (2019).

    Article  Google Scholar 

  53. 53.

    Tyack, P. L. et al. Beaked whales respond to simulated and actual navy sonar. PLoS ONE 6, e17009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Da Silva, A., Samplonius, J., Schlicht, E., Valcu, M. & Kempenaers, B. Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav. Ecol. 25, 1037–1047 (2014).

    Article  Google Scholar 

  55. 55.

    Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).

    Article  Google Scholar 

  57. 57.

    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155 (2018).

    Article  Google Scholar 

  58. 58.

    Girling, R. D., Lusebrink, I., Farthing, E., Newman, T. A. & Poppy, G. M. Diesel exhaust rapidly degrades floral odours used by honeybees. Sci. Rep. 3, 2779 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Becker, N., Zgomba, M., Petric, D. & Ludwig, M. Comparison of carbon dioxide, octenol and a host‐odour as mosquito attractants in the Upper Rhine Valley, Germany. Med. Vet. Entomol. 9, 377–380 (1995).

    Article  CAS  Google Scholar 

  60. 60.

    Longcore, T. et al. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos. Trans. R. Soc. B 370, 20140125 (2015).

    Article  Google Scholar 

  61. 61.

    Halfwerk, W., Holleman, L. J. M., Lessells, C. K. M. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).

    Article  Google Scholar 

  62. 62.

    Park, D., Hempleman, S. C. & Propper, C. R. Endosulfan exposure disrupts pheromonal systems in the red-spotted newt: a mechanism for subtle effects of environmental chemicals. Environ. Health Perspect. 109, 669–673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Aulsebrook, A. E., Jones, T. M., Mulder, R. A. & Lesku, J. A. Impacts of artificial light at night on sleep: a review and prospectus. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 409–418 (2018).

    Google Scholar 

  64. 64.

    Slabbekoorn, H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. 85, 1089–1099 (2013).

    Article  Google Scholar 

  65. 65.

    Yuen, S. W. & Bonebrake, T. C. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders. PeerJ 5, e4070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Russ, A., Rüger, A. & Klenke, R. Seize the night: European blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).

    Article  Google Scholar 

  67. 67.

    Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196 (2006).

    Article  Google Scholar 

  68. 68.

    Stanley, J. A., Radford, C. A. & Jeffs, A. G. Location, location, location: finding a suitable home among the noise. Proc. R. Soc. B 279, 3622–3631 (2012).

    Article  Google Scholar 

  69. 69.

    Hölker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).

    Article  Google Scholar 

  70. 70.

    Ware, H. E., McClure, C. J. W., Carlisle, J. D. & Barber, J. R. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc. Natl Acad. Sci. USA 112, 201504710 (2015).

    Article  CAS  Google Scholar 

  71. 71.

    San-Jose, L. M. et al. Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat. Ecol. Evol. 3, 1331–1340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Kettel, E. F., Gentle, L. K. & Yarnell, R. W. Evidence of an urban peregrine falcon (Falco peregrinus) feeding young at night. J. Raptor Res. 50, 321–323 (2016).

    Article  Google Scholar 

  73. 73.

    Francis, C. D., Kleist, N. J., Ortega, C. P. & Cruz, A. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal. Proc. R. Soc. B 279, 2727–2735 (2012).

    Article  Google Scholar 

  74. 74.

    Spoelstra, K. et al. Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light. Proc. R. Soc. B 284, 20170075 (2017).

    Article  Google Scholar 

  75. 75.

    Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & LeRoy Poff, N. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13, 267–283 (2010).

    Article  Google Scholar 

  76. 76.

    Poot, H. et al. Green light for nocturnally migrating birds. Ecol. Soc. 13, 47 (2008).

    Article  Google Scholar 

  77. 77.

    Dominoni, D. M., Smit, J. A. H., Visser, M. E. & Halfwerk, W. Multisensory pollution: artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). Environ. Pollut. 256, 113314 (2020).

    Article  CAS  Google Scholar 

  78. 78.

    Dominoni, D., Carmona-Wagner, E., Hofmann, M., Kranstauber, B. & Partecke, J. Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J. Anim. Ecol. 83, 681–692 (2014).

    Article  Google Scholar 

  79. 79.

    Dorado-Correa, A. M., Rodríguez-Rocha, M. & Brumm, H. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird. R. Soc. Open Sci. 3, 160231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Francis, C. D. Vocal traits and diet explain avian sensitivities to anthropogenic noise. Glob. Change Biol. 21, 1809–1820 (2015).

    Article  Google Scholar 

  82. 82.

    Thomas, R. J. et al. Eye size in birds and the timing of song at dawn. Proc. R. Soc. B 269, 831–837 (2002).

    Article  Google Scholar 

  83. 83.

    de Jong, M. et al. Dose-dependent responses of avian daily rhythms to artificial light at night. Physiol. Behav. 155, 172–179 (2016).

    Article  CAS  Google Scholar 

  84. 84.

    Dominoni, D. M. et al. Dose-response effects of light at night on the reproductive physiology of great tits (Parus major): integrating morphological analyses with candidate gene expression. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 473–487 (2018).

    CAS  Google Scholar 

  85. 85.

    Bruening, A., Hölker, F., Franke, S., Preuer, T. & Kloas, W. Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress. Sci. Total Environ. 511, 516–522 (2015).

    Article  CAS  Google Scholar 

  86. 86.

    Williams, R., Erbe, C., Ashe, E., Beerman, A. & Smith, J. Severity of killer whale behavioral responses to ship noise: a dose-response study. Mar. Pollut. Bull. 79, 254–260 (2014).

    Article  CAS  Google Scholar 

  87. 87.

    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Evans, J. E., Cuthill, I. C. & Bennett, A. T. D. The effect of flicker from fluorescent lights on mate choice in captive birds. Anim. Behav. 72, 393–400 (2006).

    Article  Google Scholar 

  89. 89.

    Lürling, M. Effects of a surfactant (FFD-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere 62, 1351–1358 (2006).

    Article  CAS  Google Scholar 

  90. 90.

    Simpson, S. D. et al. in The Effects of Noise on Aquatic Life II (eds Popper, A. & Hawkins, A.) 1041–1048 (Springer, 2016).

  91. 91.

    Stanley, J. A., Wilkens, S. L. & Jeffs, A. G. Fouling in your own nest: vessel noise increases biofouling. Biofouling 30, 837–844 (2014).

    Article  Google Scholar 

  92. 92.

    Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345, 892–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Greif, S. & Siemers, B. M. Innate recognition of water bodies in echolocating bats. Nat. Commun. 1, 107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Greif, S., Zsebok, S., Schmieder, D. & Siemers, B. M. Acoustic mirrors as sensory traps for bats. Science 357, 1045–1047 (2017).

    Article  CAS  Google Scholar 

  95. 95.

    Horváth, G., Kriska, G., Malik, P. & Robertson, B. Polarized light pollution: a new kind of ecological photopollution. Front. Ecol. Environ. 7, 317–325 (2009).

    Article  Google Scholar 

  96. 96.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Article  Google Scholar 

  97. 97.

    Hau, M. et al. Timing as a sexually selected trait: The right mate at the right moment. Philos. Trans. R. Soc. B 372, 20160249 (2017).

    Article  CAS  Google Scholar 

  98. 98.

    Dominoni, D. M., Åkesson, S., Klaassen, R., Spoelstra, K. & Bulla, M. Methods in field chronobiology. Philos. Trans. R. Soc. B 372, 20160247 (2017).

    Article  Google Scholar 

  99. 99.

    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article  CAS  Google Scholar 

  100. 100.

    Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. B 282, 20151453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Lory State Park, Colorado, USA, for hosting our workshop in October 2017 that led to this Perspective. We also acknowledge our collaborators at the National Park Service’s Natural Sounds and Night Skies Division. The work was supported by the NASA Ecological Forecasting Grant NNX17AG36G to N.H.C., J.R.B., C.D.F. and D.C.S.

Author information

Affiliations

Authors

Contributions

All authors participated at the workshop in Colorado and actively contributed to round-table discussions. D.M.D., W.H., C.D.F., N.H.C. and J.R.B. laid out the ideas for this manuscript and discussed its content and structure. D.M.D. and W.H. contributed equally to write the initial draft of the paper. C.D.F., N.H.C. and J.R.B. contributed equally to provide feedback and editing on this initial draft. E.B., R.T.B., E.F.-J., K.M.F., M.F.M., D.J.M., E.K.P., B.M.S., D.C.S., J.B.T., C.A.T., L.P.T. and A.W. contributed to this Perspective intellectually and by providing examples and editing. All authors agreed on the final version of the manuscript.

Corresponding author

Correspondence to Davide M. Dominoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table

Table with examples of the impacts of sensory pollutants categorized by sensory mechanism.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dominoni, D.M., Halfwerk, W., Baird, E. et al. Why conservation biology can benefit from sensory ecology. Nat Ecol Evol 4, 502–511 (2020). https://doi.org/10.1038/s41559-020-1135-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing