Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years

This article has been updated


Dairy pastoralism is integral to contemporary and past lifeways on the eastern Eurasian steppe, facilitating survival in agriculturally challenging environments. While previous research has indicated that ruminant dairy pastoralism was practiced in the region by circa 1300 bc, the origin, extent and diversity of this custom remain poorly understood. Here, we analyse ancient proteins from human dental calculus recovered from geographically diverse locations across Mongolia and spanning 5,000 years. We present the earliest evidence for dairy consumption on the eastern Eurasian steppe by circa 3000 bc and the later emergence of horse milking at circa 1200 bc, concurrent with the first evidence for horse riding. We argue that ruminant dairying contributed to the demographic success of Bronze Age Mongolian populations and that the origins of traditional horse dairy products in eastern Eurasia are closely tied to the regional emergence of mounted herding societies during the late second millennium bc.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ruminant and equine dairying in prehistoric Eurasia and contemporary Mongolia.
Fig. 2: Mongolian dairy consumption by period.
Fig. 3: Alignment of observed BLG peptides for two individuals analysed in this study, showing the number of Equus and ruminant BLG peptides detected.
Fig. 4: Timeline of evidence for the consumption of different livestock milk in prehistoric and historic Mongolia.

Data availability

Raw and processed MS/MS data from blanks, instrument washes and samples are available to download via the PRIDE partner repository under accession codes PXD014730 and PXD014730. The authors declare that all other data supporting the findings of this study are available within the paper and its supplementary information files. We have commissioned a Mongolian translation of this manuscript, available at

Code availability

MS-MARGE, an R script used to estimate the validity of peptide identifications and summarize the findings is available for use via Bitbucket: The custom dairy database used to analyse the data in this study is available to download via the York Research Database at

Change history


  1. 1.

    Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Sherratt, A. The secondary exploitation of animals in the Old World. World Archaeol. 15, 90–104 (1983).

    Google Scholar 

  3. 3.

    Arbuckle, B. S. & Hammer, E. L. The rise of pastoralism in the ancient Near East. J Archaeol. Res. 27, 391–449 (2019).

    Google Scholar 

  4. 4.

    Ishii, S. & Samejima, K. Dietary survey on the diet of Mongolian nomads. J. Home Econ. Jpn. 50, 845–853 (1999).

    Google Scholar 

  5. 5.

    Sherratt, A. Plough and Pastoralism: Aspects of the Secondary Products Revolution (Cambridge Univ. Press, 1981).

  6. 6.

    Vigne, J. D. Early domestication and farming: what should we know or do for a better understanding? Anthropozoologica 50, 123–150 (2015).

    Google Scholar 

  7. 7.

    Evershed, R. P. et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455, 528–531 (2008).

    CAS  PubMed  Google Scholar 

  8. 8.

    Salque, M. et al. Earliest evidence for cheese making in the sixth millennium bc in northern Europe. Nature 493, 522–525 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    Outram, A. K. et al. The earliest horse harnessing and milking. Science 323, 1332–1335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Outram, A. K. et al. Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J. Archaeol. Sci. 39, 2424–2435 (2012).

    CAS  Google Scholar 

  11. 11.

    Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 bp, northwestern China). Quat. Int. 426, 158–165 (2016).

    Google Scholar 

  12. 12.

    Yang, Y. et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014).

    CAS  Google Scholar 

  13. 13.

    Wright, J. Households without houses: mobility and moorings on the Eurasian Steppe. J. Anthropol. Res. 72, 133–157 (2016).

    Google Scholar 

  14. 14.

    Janz, L., Odsuren, D. & Bukhchuluun, D. Transitions in palaeoecology and technology: hunter-gatherers and early herders in the Gobi Desert. J. World Prehist. 30, 1–80 (2017).

    Google Scholar 

  15. 15.

    Kovalev, A. A., Erdenebaatar, D. & Rukavishnikova, I. V. A ritual complex with deer stones at Uushigiin Uvur, Mongolia: composition and construction stages. Archaeol. Ethnol. Anthropol. Eurasia 44, 82–92 (2016).

    Google Scholar 

  16. 16.

    Taylor, W. et al. Radiocarbon dating and cultural dynamics across Mongolia’s early pastoral transition. PLoS ONE 14, e0224241 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kovalev, A., Sergey, G. & Chuluunbat, M. Earliest Europeans in the Heart of Asia: The Chemurchek (Qiemuerqieke) Cultural Phenomenon Vol. 2 (Saint Petersburg State Museum–Institute of the Roerichs, 2015).

  18. 18.

    Kovalev, A. Earliest Europeans in the heart of Asia: The Chemurchek (Qiemuerqieke) Cultural Phenomenon Vol. 1 (LEMA, 2014).

  19. 19.

    Kovalev, A. & Erdenebaatar, D. in Current Archaeological Research in Mongolia Vol. 4 (eds Bemmann, J. et al.)149–170 (Rheinische Friedrich-Wilhelms-Univ., 2009).

  20. 20.

    Honeychurch, W. in Handbook of East and Southeast Asian Archaeology (eds Habu, J. et al.) 513–532 (Springer, 2017).

  21. 21.

    Houle, J. L. Emergent Complexity on the Mongolian Steppe: Mobility, Territoriality, and the Development of Early Nomadic Polities (Univ. Pittsburgh, 2010).

  22. 22.

    Allard, F., Erdenebaatar, D., Olsen, S., Cavalla, A. & Maggiore, E. in Social Orders and Social Landscapes (eds Popova, C. et al.) 151–162 (Cambridge Scholars, 2007).

  23. 23.

    Taylor, W. Horse demography and use in Bronze Age Mongolia. Quat. Int. 436, 270–282 (2017).

    Google Scholar 

  24. 24.

    Taylor, W. T. T. et al. Origins of equine dentistry. Proc. Natl Acad. Sci. USA 115, E6707–E6715 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Taylor, W. T. T. & Tuvshinjargal, T. in Care or Neglect: Evidence of Animal Disease in Archaeology (eds Bartosiewicz, L. & Gál, E.) 134–154 (Oxbow Books, 2018).

  26. 26.

    Sima, Q. Records of the Grand Historian: Han Dynasty I (Columbia Univ. Press, 1993).

  27. 27.

    de Rachewiltz, I. The Secret History of the Mongols: A Mongolian Epic Chronicle of the Thirteenth Century (Univ. Wisconson-Madison, 2004).

  28. 28.

    Smith, J. M.,Jr. Dietary decadence and dynastic decline in the Mongol Empire. J. South Asian Hist. 34, 35–52 (2000).

    Google Scholar 

  29. 29.

    Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mays, S. et al. Lives before and after Stonehenge: an osteobiographical study of four prehistoric burials recently excavated from the Stonehenge World Heritage Site. J. Archaeol. Sci. Rep. 20, 692–710 (2018).

    Google Scholar 

  31. 31.

    Charlton, S. et al. New insights into Neolithic milk consumption through proteomic analysis of dental calculus. Archaeol. Anthropol. Sci. 11, 6183–6196 (2019).

    Google Scholar 

  32. 32.

    Hendy, J. et al. Proteomic evidence of dietary sources in ancient dental calculus. Proc. Biol. Sci. 285, 20180977 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Houle, J. L. Bronze Age Mongolia (Oxford Univ. Press, 2016).

  34. 34.

    Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Schroeter, E. R. & Cleland, T. P. Glutamine deamidation: an indicator of antiquity, or preservational quality? Rapid Commun. Mass Spectrom. 30, 251–255 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Mackie, M. et al. Palaeoproteomic profiling of conservation layers on a 14th century italian wall painting. Angew. Chem. Int. Ed. Engl. 57, 7369–7374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rogers, L. L. Understanding Ancient Human Population Genetics of the Eastern Eurasian Steppe Through Mitochondrial DNA Analysis: Central Mongolian Samples From the Neolithic, Bronze Age, Iron Age and Mongol Empire Periods (Indiana Univ., 2016).

  38. 38.

    Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Malacarne, M., Martuzzi, F., Summer, A. & Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 12, 869–877 (2002).

    CAS  Google Scholar 

  42. 42.

    Barłowska, J., Szwajkowska, M., Litwińczuk, Z. & Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 10, 291–302 (2011).

    Google Scholar 

  43. 43.

    Buell, P. D. Steppe foodways and history. Asian Med. 2, 171–203 (2006).

    Google Scholar 

  44. 44.

    Taylor, W. T. T., Bayarsaikhan, J. & Tuvshinjargal, T. Equine cranial morphology and the identification of riding and chariotry in late Bronze Age Mongolia. Antiquity 89, 854–871 (2015).

    Google Scholar 

  45. 45.

    Taylor, W. T. T. et al. A Bayesian chronology for early domestic horse use in the Eastern Steppe. J. Archaeol. Sci. 81, 49–58 (2017).

    Google Scholar 

  46. 46.

    Brosseder, U. & Miller, B. K. (eds) Xiongnu Archaeology: Multidisciplinary Perspectives of the First Steppe Empire in Inner Asia Vol. 5 (Rheinische Friedrich-Wilhelms-Univ., 2011).

  47. 47.

    Miller, B. K. Power Politics in the Xiongnu Empire (Univ. of Pennsylvania, 2009).

  48. 48.

    Kuan, H. (1st BCE). in Discourses on Salt and Iron: Commentaries (ed. Wang, L.) (1958).

  49. 49.

    Ban, G. Han shu (Ding wen shu ju, 1962).

  50. 50.

    Sima, Q. Records of the Grand Historian. Qin Dynasty (Columbia Univ. Press, 1961).

  51. 51.

    Raynal-Ljutovac, K., Lagriffoul, G., Paccard, P., Guillet, I. & Chilliard, Y. Composition of goat and sheep milk products: an update. Small Rumin. Res. 79, 57–72 (2008).

    Google Scholar 

  52. 52.

    Salimei, E. & Fantuz, F. Equid milk for human consumption. Int. Dairy J. 24, 130–142 (2012).

    CAS  Google Scholar 

  53. 53.

    Badarch, D. & Zilinskas, R. A. Mongolia Today: Science, Culture, Environment and Development (Routledge, 2015).

  54. 54.

    Rubruck, W. The Mission of Friar William of Rubruck: His Journey to the Court of the Great Khan Mongke, 1253–1255 (Hakluyt Society, 1990).

  55. 55.

    Reading, R. P., Mix, H., Lhagvasuren, B. & Blumer, E. S. Status of wild Bactrian camels and other large ungulates in south-western Mongolia. Oryx 33, 247–255 (1999).

    Google Scholar 

  56. 56.

    Hailu, Y. et al. Functional and technological properties of camel milk proteins: a review. J. Dairy Res. 83, 422–429 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Kappeler, S. R., Heuberger, C., Farah, Z. & Puhan, Z. Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland. J. Dairy Sci. 87, 2660–2668 (2004).

    CAS  PubMed  Google Scholar 

  58. 58.

    Keay, M. G. The Tsaatan reindeer herders of Mongolia: Forgotten lessons of human-animal systems. Encyclopedia of Animals and Humans 1–4 (2006).

  59. 59.

    Inamura, T. The transformation of the community of Tsaatan reindeer herders in Mongolia and their relationships with the outside world. Senri Ethnol. Stud. 69, 123–152 (2005).

    Google Scholar 

  60. 60.

    Gaunitz, C. et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 360, 111–114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    CAS  PubMed  Google Scholar 

  63. 63.

    Hagan, R. Mpi-Shh-Mascot Report Generator (MS-MARGE) (2018).

  64. 64.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367 (2008).

    CAS  PubMed  Google Scholar 

  65. 65.

    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    CAS  Google Scholar 

  66. 66.

    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    CAS  Google Scholar 

  67. 67.

    Reimer, P. J. et al. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  68. 68.

    Hong, C. et al. Identification of milk component in ancient food residue by proteomics. PLoS ONE 7, e37053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hendy, J. et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nat. Commun. 9, 4064 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Greco, E. et al. Proteomic analyses on an ancient Egyptian cheese and biomolecular evidence of brucellosis. Anal. Chem. 90, 9673–9676 (2018).

    CAS  PubMed  Google Scholar 

Download references


We thank the National University of Mongolia and the Ministry of Education, Culture, Science and Sports for facilitating this research. We thank the Functional Genomics Center Zürich, L. Kunz and C. Fortes for mass spectrometry analysis and helpful comments and suggestions for this study. We thank Dalaimyagmar, Bayandalai and Sukhbat-Nayamsuren from Khövsgöl aimag for sharing their knowledge and insights into traditional Mongolian dairying practices, traditions and herding strategies. We thank K. Douka from the Oxford Radiocarbon Accelerator Unit and M. Dee from the Groningen Radiocarbon Laboratory for radiocarbon analysis. This research was supported by the Max Planck Society (to S.W., A.V.M., W.T.T.T., R.W.H., M.B., A.S., N.B., C.W. and J.H.), a Max Planck Society Donation Award (to J.H. and C.W.), the US National Science Foundation (grant no. BCS-1523264 to C.W.) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 804884-DAIRYCULTURES to C.W.). The protein database used for this research was produced within the framework of ‘FoodTransforms: transformations of food in the Eastern Mediterranean Late Bronze Age’ (ERC-2015-StG 678901-FoodTransforms) funded by the European Research Council. Deamidation analysis was funded by the Arts and Humanities Research Council (grant no. AH/N005015/1).

Author information




S.W., W.T.T.T., N.B., C.W. and J.H. designed the research plan. S.W., M.B., S.G., M.H., S.U., E.M. and J.H. assessed archaeological collections and performed osteological assessments and subsampling. S.W., R.W.H., A.R., C.T., P.N. and J.H. performed laboratory work, mass spectrometry work and data analysis. R.W.H., A.S., A.R., C.T., J.G., P.W.S. and C.W. contributed to the development of data analysis tools. S.W., A.V.M., W.T.T.T., B.K.M., S.U., L.O., E.M., C.W. and J.H. contributed to archaeological data interpretation. J.H. and S.W. generated the figures. S.W. and J.H. wrote the paper with input from W.T.T.T., L.O. and C.W. and final approval from all authors.

Corresponding author

Correspondence to Shevan Wilkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Milk and bulk deamidation and peptide counts.

Supplementary information

Supplementary Information

Supplementary Table 1 listing all of the sites include in Table 1, Supplementary Table 2 listing deamidation results used in Extended Data 1, Supplementary Data 3 showing an example of our data filtering method MS-MARGE defined in the main text methods section.

Reporting Summary

Supplementary Table

Table S3. Location, date, taxa, site information and references for sites included in Fig. 1; Table S4. Archaeological culture groups, archaeological sites and their geographic coordinates (rounded to two decimal places), and dairy protein taxonomic identifications presented in Fig. 2; Table S5. Peptides included in peptide mapping coverage of ruminant and equine BLG identified in individuals AT-233 and AT-775 and presented in Fig. 3; Table S6. Data for the creation of Fig. 4, showing temporal distribution of dairying taxa.

Supplementary Data

Supplementary Data 1: Species included in dairy database. Supplementary Data 2: Dairy peptides identified per individual.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilkin, S., Ventresca Miller, A., Taylor, W.T.T. et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat Ecol Evol 4, 346–355 (2020).

Download citation

Further reading

  • Evidence for early dispersal of domestic sheep into Central Asia

    • William T. T. Taylor
    • , Mélanie Pruvost
    • , Cosimo Posth
    • , William Rendu
    • , Maciej T. Krajcarz
    • , Aida Abdykanova
    • , Greta Brancaleoni
    • , Robert Spengler
    • , Taylor Hermes
    • , Stéphanie Schiavinato
    • , Gregory Hodgins
    • , Raphaela Stahl
    • , Jina Min
    • , Saltanat Alisher kyzy
    • , Stanisław Fedorowicz
    • , Ludovic Orlando
    • , Katerina Douka
    • , Andrey Krivoshapkin
    • , Choongwon Jeong
    • , Christina Warinner
    •  & Svetlana Shnaider

    Nature Human Behaviour (2021)

  • Assessing the degradation of ancient milk proteins through site-specific deamidation patterns

    • Abigail Ramsøe
    • , Mia Crispin
    • , Meaghan Mackie
    • , Krista McGrath
    • , Roman Fischer
    • , Beatrice Demarchi
    • , Matthew J. Collins
    • , Jessica Hendy
    •  & Camilla Speller

    Scientific Reports (2021)

  • Dairying enabled Early Bronze Age Yamnaya steppe expansions

    • Shevan Wilkin
    • , Alicia Ventresca Miller
    • , Ricardo Fernandes
    • , Robert Spengler
    • , William T.-T. Taylor
    • , Dorcas R. Brown
    • , David Reich
    • , Douglas J. Kennett
    • , Brendan J. Culleton
    • , Laura Kunz
    • , Claudia Fortes
    • , Aleksandra Kitova
    • , Pavel Kuznetsov
    • , Andrey Epimakhov
    • , Victor F. Zaibert
    • , Alan K. Outram
    • , Egor Kitov
    • , Aleksandr Khokhlov
    • , David Anthony
    •  & Nicole Boivin

    Nature (2021)

  • Ancient proteins provide evidence of dairy consumption in eastern Africa

    • Madeleine Bleasdale
    • , Kristine K. Richter
    • , Anneke Janzen
    • , Samantha Brown
    • , Ashley Scott
    • , Jana Zech
    • , Shevan Wilkin
    • , Ke Wang
    • , Stephan Schiffels
    • , Jocelyne Desideri
    • , Marie Besse
    • , Jacques Reinold
    • , Mohamed Saad
    • , Hiba Babiker
    • , Robert C. Power
    • , Emmanuel Ndiema
    • , Christine Ogola
    • , Fredrick K. Manthi
    • , Muhammad Zahir
    • , Michael Petraglia
    • , Christian Trachsel
    • , Paolo Nanni
    • , Jonas Grossmann
    • , Jessica Hendy
    • , Alison Crowther
    • , Patrick Roberts
    • , Steven T. Goldstein
    •  & Nicole Boivin

    Nature Communications (2021)

  • Genomic insights into the formation of human populations in East Asia

    • Chuan-Chao Wang
    • , Hui-Yuan Yeh
    • , Alexander N. Popov
    • , Hu-Qin Zhang
    • , Hirofumi Matsumura
    • , Kendra Sirak
    • , Olivia Cheronet
    • , Alexey Kovalev
    • , Nadin Rohland
    • , Alexander M. Kim
    • , Swapan Mallick
    • , Rebecca Bernardos
    • , Dashtseveg Tumen
    • , Jing Zhao
    • , Yi-Chang Liu
    • , Jiun-Yu Liu
    • , Matthew Mah
    • , Ke Wang
    • , Zhao Zhang
    • , Nicole Adamski
    • , Nasreen Broomandkhoshbacht
    • , Kimberly Callan
    • , Francesca Candilio
    • , Kellie Sara Duffett Carlson
    • , Brendan J. Culleton
    • , Laurie Eccles
    • , Suzanne Freilich
    • , Denise Keating
    • , Ann Marie Lawson
    • , Kirsten Mandl
    • , Megan Michel
    • , Jonas Oppenheimer
    • , Kadir Toykan Özdoğan
    • , Kristin Stewardson
    • , Shaoqing Wen
    • , Shi Yan
    • , Fatma Zalzala
    • , Richard Chuang
    • , Ching-Jung Huang
    • , Hana Looh
    • , Chung-Ching Shiung
    • , Yuri G. Nikitin
    • , Andrei V. Tabarev
    • , Alexey A. Tishkin
    • , Song Lin
    • , Zhou-Yong Sun
    • , Xiao-Ming Wu
    • , Tie-Lin Yang
    • , Xi Hu
    • , Liang Chen
    • , Hua Du
    • , Jamsranjav Bayarsaikhan
    • , Enkhbayar Mijiddorj
    • , Diimaajav Erdenebaatar
    • , Tumur-Ochir Iderkhangai
    • , Erdene Myagmar
    • , Hideaki Kanzawa-Kiriyama
    • , Masato Nishino
    • , Ken-ichi Shinoda
    • , Olga A. Shubina
    • , Jianxin Guo
    • , Wangwei Cai
    • , Qiongying Deng
    • , Longli Kang
    • , Dawei Li
    • , Dongna Li
    • , Rong Lin
    • , Nini
    • , Rukesh Shrestha
    • , Ling-Xiang Wang
    • , Lanhai Wei
    • , Guangmao Xie
    • , Hongbing Yao
    • , Manfei Zhang
    • , Guanglin He
    • , Xiaomin Yang
    • , Rong Hu
    • , Martine Robbeets
    • , Stephan Schiffels
    • , Douglas J. Kennett
    • , Li Jin
    • , Hui Li
    • , Johannes Krause
    • , Ron Pinhasi
    •  & David Reich

    Nature (2021)


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing