Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species

Matters Arising to this article was published on 17 February 2020

The Original Article was published on 08 April 2019

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of how the impacts of invasion change depending on data aggregation of invader characteristics and native responses, different analytical approaches and different controls.

References

  1. Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).

    Article  Google Scholar 

  2. Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  3. Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2011).

  4. Thomsen, M. S., Wernberg, T., Tuya, F. & Silliman, B. R. Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J. Phycol. 45, 812–819 (2009).

    Article  Google Scholar 

  5. Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47 (2014).

    Article  Google Scholar 

  6. Maggi, E. et al. Ecological impacts of invading seaweeds: a meta‐analysis of their effects at different trophic levels. Diversity Distrib. 21, 1–12 (2015).

    Article  Google Scholar 

  7. Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Article  Google Scholar 

  8. Hu, Z.-M. & Juan, L.-B. Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla. Biol. Invasions 16, 967–976 (2014).

    Article  Google Scholar 

  9. Thomsen, M. S., Ramus, A. P., Long, Z. T. & Silliman, B. R. A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biol. Invasions 21, 27–36 (2019).

    Article  Google Scholar 

  10. Martínez-Lüscher, J. & Holmer, M. Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar. Environ. Res. 69, 345–349 (2010).

    Article  Google Scholar 

  11. Ramus, A. P., Silliman, B. R., Thomsen, M. S. & Long, Z. T. An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proc. Natl Acad. Sci. USA 114, 8580–8585 (2017).

    Article  CAS  Google Scholar 

  12. Lyons, D. A. et al. Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob. Change Biol. 20, 2712–2724 (2014).

    Article  Google Scholar 

  13. Thomsen, M. S. & Wernberg, T. The devil in the detail: harmful seaweeds are not harmful to everyone. Glob. Change Biol. 21, 1381–1382 (2015).

    Article  Google Scholar 

  14. Lyons, D. et al. There are no whole truths in meta-analyses: all their truths are half-truths. Glob. Change Biol. 22, 968–971 (2016).

    Article  Google Scholar 

  15. Thomsen, M. S., Wernberg, T., South, P. M. & Schiel, D. R. To include or not to include (the invader in community analyses)? That is the question. Biol. Invasions 18, 1515–1521 (2016).

    Article  Google Scholar 

  16. Thomsen, M. S., Wernberg, T., South, P. M. & Schiel, D. R. in Seaweed Phylogeography (eds Hu, Z. M. & Fraser, C.) 147–185 (Springer, 2016).

  17. South, P. M. et al. Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Mar. Freshw. Res. 67, 103–112 (2016).

    Article  Google Scholar 

  18. Anton, A. et al. Global ecological impacts of marine exotic species. PANGAEA https://doi.org/10.1594/PANGAEA.895681 (2019).

  19. Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    Article  Google Scholar 

  20. Sol, D., Vila, M. & Kühn, I. The comparative analysis of historical alien introductions. Biol. Invasions 10, 1119–1129 (2008).

    Article  Google Scholar 

  21. Kumschick, S. et al. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65, 55–63 (2014).

    Article  Google Scholar 

  22. Kochmann, J., Buschbaum, C., Volkenborn, N. & Reise, K. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. J. Exp. Mar. Biol. Ecol. 364, 1–10 (2008).

    Article  Google Scholar 

  23. Ruesink, J. L. et al. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36, 643–689 (2005).

    Article  Google Scholar 

  24. Bateman, D. C. & Bishop, M. J. The environmental context and traits of habitat-forming bivalves influence the magnitude of their ecosystem engineering. Mar. Ecol. Prog. Ser. 563, 95–110 (2017).

    Article  Google Scholar 

  25. Schwindt, E., Bortolus, A. & Iribarne, O. O. Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol. Invasions 3, 137–149 (2001).

    Article  Google Scholar 

  26. Wang, Q. et al. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxon. Sin. 44, 559–588 (2006).

    Article  Google Scholar 

  27. Thomsen, M. S. et al. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE 7, e28595 (2012).

    Article  CAS  Google Scholar 

  28. Romero, G. Q., Gonçalves‐Souza, T., Vieira, C. & Koricheva, J. Ecosystem engineering effects on species diversity across ecosystems: a meta‐analysis. Biol. Rev. 90, 877–890 (2015).

    Article  Google Scholar 

  29. Guy‐Haim, T. et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta‐analysis. Glob. Change Biol. 24, 906–924 (2018).

    Article  Google Scholar 

  30. Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).

    Article  Google Scholar 

  31. Wallace, B. C. et al. Open MEE: Intuitive, open‐source software for meta‐analysis in ecology and evolutionary biology. Methods Ecol. Evol. 8, 941–947 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Solgaard Thomsen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data

Supplementary Data 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgaard Thomsen, M. Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nat Ecol Evol 4, 312–314 (2020). https://doi.org/10.1038/s41559-020-1117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1117-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing