Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developmental cost theory predicts thermal environment and vulnerability to global warming


Metazoans must develop from zygotes to feeding organisms. In doing so, developing offspring consume up to 60% of the energy provided by their parent. The cost of development depends on two rates: metabolic rate, which determines the rate that energy is used; and developmental rate, which determines the length of the developmental period. Both development and metabolism are highly temperature-dependent such that developmental costs should be sensitive to the local thermal environment. Here, we develop, parameterize and test developmental cost theory, a physiologically explicit theory that reveals that ectotherms have narrow thermal windows in which developmental costs are minimized (Topt). Our developmental cost theory-derived estimates of Topt predict the natural thermal environment of 71 species across seven phyla remarkably well (R2 ~0.83). Developmental cost theory predicts that costs of development are much more sensitive to small changes in temperature than classic measures such as survival. Warming-driven changes to developmental costs are predicted to strongly affect population replenishment and developmental cost theory provides a mechanistic foundation for determining which species are most at risk. Developmental cost theory predicts that tropical aquatic species and most non-nesting terrestrial species are likely to incur the greatest increase in developmental costs from future warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Graphical representation of temperature-dependent developmental cost theory.
Fig. 2: Development costs across temperatures for developing ectotherms.
Fig. 3: Effect of developmental environment on mismatch between Topt and Tmid for 71 ectotherms.
Fig. 4: Change in performance associated with a 20% increase (relative to the range experienced by that species) in temperature relative to the thermal optimum.

Data availability

The data used in these meta-analyses are available from Dryad:


  1. 1.

    Mueller, C. A., Joss, J. M. P. & Seymour, R. S. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri. J. Comp. Physiol. B 181, 43–52 (2011).

    Article  Google Scholar 

  2. 2.

    Bennett, C. E. & Marshall, D. J. The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian Diplosoma listerianum. Mar. Freshwat. Behav. Physiol. 38, 21–29 (2005).

    Article  Google Scholar 

  3. 3.

    Pettersen, A. K., White, C. R., Bryson-Richardson, R. J. & Marshall, D. J. Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. Ecol. Lett. 22, 518–526 (2019).

    Article  Google Scholar 

  4. 4.

    Kamler, E. Early Life History of Fish—An Energetics Approach, Vol. 4 (Chapman and Hall, 1992).

  5. 5.

    Kamler, E. Parent–egg–progeny relationships in teleost fishes: an energetics perspective. Rev. Fish Biol. Fish. 15, 399–421 (2005).

    Article  Google Scholar 

  6. 6.

    Zuo, W. Y., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B 279, 1840–1846 (2012).

    Article  Google Scholar 

  7. 7.

    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Pechenik, J. A. Larval experience and latent effects—metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323–333 (2006).

    Article  Google Scholar 

  10. 10.

    Marshall, D. J., Pettersen, A. K. & Cameron, H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Funct. Ecol. 32, 1436–1446 (2018).

    Article  Google Scholar 

  11. 11.

    Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).

    Article  Google Scholar 

  12. 12.

    Shine, R. Manipulative mothers and selective forces: the effects of reproduction on thermoregulation in reptiles. Herpetologica 68, 289–298 (2012).

    Article  Google Scholar 

  13. 13.

    Goller, M., Goller, F. & French, S. S. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol. Evol. 4, 3319–3329 (2014).

    Article  Google Scholar 

  14. 14.

    Steele, J. H. A comparison of terrestrial and marine ecological systems. Nature 313, 355–358 (1985).

    Article  Google Scholar 

  15. 15.

    Melampy, R. M. & Willis, E. R. Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol. Zool. 12, 302–311 (1939).

    CAS  Article  Google Scholar 

  16. 16.

    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).

    Article  Google Scholar 

  17. 17.

    Berrigan, D. & Partridge, L. Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster. Comp. Biochem. Physiol. A 118, 1301–1307 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    Alton, L. A., Condon, C., White, C. R. & Angilletta, M. J. Jr Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster. Evolution 71, 145–152 (2017).

    Article  Google Scholar 

  19. 19.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-101 (2011).

  20. 20.

    Nakagawa, S. & Lagisz, M. Visualizing unbiased and biased unweighted meta-analyses. J. Evol. Biol. 29, 1914–1916 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Orme, D. The caper Package: Comparative Analysis of Phylogenetics and Evolution in R. R package version 5 (2013).

  22. 22.

    Michonneau, F., Brown, J. W. & Winter, D. J. rot1: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Article  Google Scholar 

  23. 23.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    Article  Google Scholar 

  25. 25.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

Download references


We thank B. Comerford, M. Parascandalo and L. Morris for assistance. This work was supported by funding to the Centre for Geometric Biology, Monash University.

Author information




D.J.M. conceived the study, collected and analysed the data and wrote the first draft. M.B. developed the mathematical theory. D.J.M. and A.K.P. collected the data. D.J.M. and C.R.W. analysed the data. All authors contributed to subsequent drafts.

Corresponding author

Correspondence to Dustin J. Marshall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text 1–3, Tables 1–4, Figs. 1–3 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marshall, D.J., Pettersen, A.K., Bode, M. et al. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat Ecol Evol 4, 406–411 (2020).

Download citation

Further reading

  • The contribution of insects to global forest deadwood decomposition

    • Sebastian Seibold
    • , Werner Rammer
    • , Torsten Hothorn
    • , Rupert Seidl
    • , Michael D. Ulyshen
    • , Janina Lorz
    • , Marc W. Cadotte
    • , David B. Lindenmayer
    • , Yagya P. Adhikari
    • , Roxana Aragón
    • , Soyeon Bae
    • , Petr Baldrian
    • , Hassan Barimani Varandi
    • , Jos Barlow
    • , Claus Bässler
    • , Jacques Beauchêne
    • , Erika Berenguer
    • , Rodrigo S. Bergamin
    • , Tone Birkemoe
    • , Gergely Boros
    • , Roland Brandl
    • , Hervé Brustel
    • , Philip J. Burton
    • , Yvonne T. Cakpo-Tossou
    • , Jorge Castro
    • , Eugénie Cateau
    • , Tyler P. Cobb
    • , Nina Farwig
    • , Romina D. Fernández
    • , Jennifer Firn
    • , Kee Seng Gan
    • , Grizelle González
    • , Martin M. Gossner
    • , Jan C. Habel
    • , Christian Hébert
    • , Christoph Heibl
    • , Osmo Heikkala
    • , Andreas Hemp
    • , Claudia Hemp
    • , Joakim Hjältén
    • , Stefan Hotes
    • , Jari Kouki
    • , Thibault Lachat
    • , Jie Liu
    • , Yu Liu
    • , Ya-Huang Luo
    • , Damasa M. Macandog
    • , Pablo E. Martina
    • , Sharif A. Mukul
    • , Baatarbileg Nachin
    • , Kurtis Nisbet
    • , John O’Halloran
    • , Anne Oxbrough
    • , Jeev Nath Pandey
    • , Tomáš Pavlíček
    • , Stephen M. Pawson
    • , Jacques S. Rakotondranary
    • , Jean-Baptiste Ramanamanjato
    • , Liana Rossi
    • , Jürgen Schmidl
    • , Mark Schulze
    • , Stephen Seaton
    • , Marisa J. Stone
    • , Nigel E. Stork
    • , Byambagerel Suran
    • , Anne Sverdrup-Thygeson
    • , Simon Thorn
    • , Ganesh Thyagarajan
    • , Timothy J. Wardlaw
    • , Wolfgang W. Weisser
    • , Sungsoo Yoon
    • , Naili Zhang
    •  & Jörg Müller

    Nature (2021)

  • The Goldilocks zone of animal development

    • H. Arthur Woods

    Nature Ecology & Evolution (2020)

  • Correlational selection on size and development time is inconsistent across early life stages

    • Evatt Chirgwin
    •  & Keyne Monro

    Evolutionary Ecology (2020)


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing