Ecological changes with minor effect initiate evolution to delayed regime shifts


Regime shifts have been documented in a variety of natural and social systems. These abrupt transitions produce dramatic shifts in the composition and functioning of socioecological systems. Existing theory on ecosystem resilience has only considered regime shifts to be caused by changes in external conditions beyond a tipping point and therefore lacks an evolutionary perspective. In this study, we show how a change in external conditions has little ecological effect and does not push the system beyond a tipping point. The change therefore does not cause an immediate regime shift but instead triggers an evolutionary process that drives a phenotypic trait beyond a tipping point, thereby resulting (after a substantial delay) in a selection-induced regime shift. Our finding draws attention to the fact that regime shifts observed in the present may result from changes in the distant past, and highlights the need for integrating evolutionary dynamics into the theoretical foundation for ecosystem resilience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Potential ecological and evolutionary effects of changing conditions in ecosystems with ASSs.
Fig. 2: Eco-evolutionary dynamics of a population with a habitat switch experiencing a decrease in mortality in the adult habitat.
Fig. 3: Ecological and eco-evolutionary consequences of a decrease in mortality risk.
Fig. 4: Eco-evolutionary dynamics of a population with a habitat switch experiencing a decrease in mortality in the adult habitat for two different regimes of mortality in the nursery habitat.

Data availability

No data were collected or used in this study.

Code availability

The implementation of the Escalator Boxcar Train numerical method and the PSPM package used to analyse the model can be found in and, respectively.


  1. 1.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 260, 471–477 (1976).

    Article  Google Scholar 

  3. 3.

    Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Winkelmann, R. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).

    PubMed  Article  Google Scholar 

  7. 7.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  9. 9.

    DeMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  10. 10.

    Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145 (2000).

    Article  Google Scholar 

  11. 11.

    Walther, G. R. Community and ecosystem responses to recent climate change. Phil. Trans. R. Soc. B 365, 2019–2024 (2010).

    PubMed  Article  Google Scholar 

  12. 12.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  13. 13.

    Singer, M. C., Thomas, C. D. & Parmesan, C. Rapid human-induced evolution of insect–host associations. Nature 366, 681–683 (1993).

    Article  Google Scholar 

  14. 14.

    Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Palumbi, S. R. & Mu, P. Humans as the World’s greatest evolutionary force: the pace of human-induced evolution. Science 293, 1786–1791 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Parvinen, K. & Dieckmann, U. Self-extinction through optimizing selection. J. Theor. Biol. 333, 1–9 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Schreiber, S. & Rudolf, V. H. W. Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecol. Lett. 11, 576–587 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size-structured populations. Ecology 15, 393–425 (1984).

    Google Scholar 

  21. 21.

    Diehl, S. & Eklov, P. Effects of piscivore-mediated habitat use on resources, diet, and growth of perch. Ecology 76, 1712–1726 (1995).

    Article  Google Scholar 

  22. 22.

    Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 134–326 (1999).

    Google Scholar 

  23. 23.

    de Roos, A. M. & Persson, L. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles. Theor. Pop. Biol. 63, 1–16 (2003).

    Article  Google Scholar 

  24. 24.

    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    PubMed  Article  Google Scholar 

  25. 25.

    Bone, E. & Farres, A. Trends and rates of microevolution in plants. Genetica 112–113, 165–182 (2001).

    PubMed  Article  Google Scholar 

  26. 26.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).

    PubMed  Article  Google Scholar 

  27. 27.

    Woodward, G. & Hildrew, A. G. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol. 71, 1063–1074 (2002).

    Article  Google Scholar 

  28. 28.

    Brose, U. et al. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol. Rev. 92, 684–697 (2017).

    PubMed  Article  Google Scholar 

  29. 29.

    Boyle, P. R. & Boletzky, S. Cephalopod populations: definition and dynamics. Phil. Trans. R. Soc. B. 351, 985–1002 (1996).

    Article  Google Scholar 

  30. 30.

    de Roos, A. M. & Persson, L. Population and Community Ecology of Ontogenetic Development (Princeton Univ. Press, 2013).

  31. 31.

    Hansen, J. H. et al. Ecological consequences of animal migration: prey partial migration affects predator ecology and prey communities. Ecosystems 22, 1–15 (2019).

    Google Scholar 

  32. 32.

    Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional differences among species and ecosystem processes. Nat. Commun. 4, 2318 (2013).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Zhou, S. et al. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proc. Natl Acad. Sci. USA 107, 9485–9489 (2010).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Scheffer, M., Hosper, S., Meijer, M., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    de Roos, A. M. & Persson, L. Size-dependent life-history traits promote catastrophic collapses of top predators. Proc. Natl Acad. Sci. USA 99, 12907–12912 (2002).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Gårdmark, A. et al. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size structured community dynamics theory. Phil. Trans. R. Soc. B. 370, 20130262 (2015).

    Article  Google Scholar 

  37. 37.

    Biro, P. A. & Post, J. R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl Acad. Sci. USA 105, 2919–2922 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Swain, D. P., Sinclair, A. F. & Hanson, J. M. Evolutionary response to size-selective mortality in an exploited fish population. Proc. Biol. Sci. 274, 1015–1022 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rocha, J. C., Peterson, G. D. & Biggs, R. Regime shifts in the Anthropocene: drivers, risks, and resilience. PLoS ONE 10, e0134639 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Brunnermeier, M. K. Deciphering the liquidity and credit crunch 2007-08. J. Econ. Perspect. 23, 77–100 (2009).

    Article  Google Scholar 

  41. 41.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).

    PubMed  Article  Google Scholar 

  43. 43.

    Persson, L., Leonardsson, K., de Roos, aM., Gyllenberg, M. & Christensen, B. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Pop. Biol. 54, 270–293 (1998).

    CAS  Article  Google Scholar 

  44. 44.

    de Roos, A. M. in Structured-Population Models in Marine, Terrestrial, and Freshwater Systems (eds Tuljapurkar, S. & Caswell, H.) 119–204 (Springer Science & Business Media, 1997).

  45. 45.

    Lande, R. A quantitative genetic theory of life history evolution. Ecology 63, 607–615 (1982).

    Article  Google Scholar 

  46. 46.

    Durinx, M., Metz, J. A. & Meszéna, G. Adaptive dynamics for physiologically structured population models. J. Math. Biol. 56, 673–742 (2008).

    PubMed  Article  Google Scholar 

  47. 47.

    de Roos, A. M. Numerical methods for structured population models: the Escalator Boxcar Train. Numer. Methods Partial Differ. Equ. 4, 173–195 (1988).

    Article  Google Scholar 

  48. 48.

    de Roos, A. M. PSPManalysis: A Package for Numerical Analysis of Physiologically Structured Population Models (Institute for Biodiversity and Ecosystem Dynamics, 2018);

Download references


This research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC grant no. 322814.

Author information




P.C.C.-P. and A.M.deR. designed methodology and gave final approval for publication. P.C.C.-P. conceived the ideas, analysed the results and led the writing of the manuscript. A.M.deR. developed the model formulation and contributed to later versions of the manuscript.

Corresponding author

Correspondence to P. Catalina Chaparro-Pedraza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Population compositions in the ASSs when the average body size at habitat switch equals 0.25.

The two ASSs correspond to low (solid line) and high biomass levels (dashed line) in the nursery habitat, and to high (solid line) and low biomass levels (dashed line) in the adult habitat. These alternative stable population compositions represent the population structure approximately at time 260 in Fig. 2 (before the regime shift in Fig. 2) and approximately at time 340 in Fig. 2 (after the regime shift in Fig. 2). The regime shift observed in Fig. 2 leads to a decrease in population density in the nursery habitat (green region) and an increase in population density in the adult habitat (blue region), mainly as a consequence of an increase in the density of immature individuals (smaller than the size at maturation). This increase in density of immature individuals in the adult habitat results in increased competition in this habitat that produces a reduction of 32% in the maximum asymptotic body size after the regime shift (reduction from 3.71 to 2.52). Parameter values as in Fig. 2.

Extended Data Fig. 2 Eco-evolutionary effects of trait variation in the population.

a) Ecological and b) evolutionary dynamics before and after a reduction of mortality in the adult habitat (vertical dotted line, from 2 to 1.5). When trait variation is represented with a truncated normal distribution with a minimum and maximum value equal to 80% and 120% (black lines) the regime shift occurs at time 390, whereas when the minimum and maximum value equal to 90% and 110% (grey lines) the regime shift occurs at time 940. Mortality in habitat 1 is 0.8, other parameters as in Table 1 (see Methods).

Extended Data Fig. 3 Long-term stability of the system.

Population biomass and food resource densities in the nursery and adult habitat and selection gradient as a function of body size at habitat switch after a decrease in mortality when the evolutionary endpoint occurs a) in one of the alternative stable ecological equilibrium resulting in a single regime shift (dynamics shown in Fig. 4a) and b) in the unstable equilibrium resulting in repeated delayed regime shifts (dynamics shown in Fig. 4b). Ecologically stable (solid lines) and unstable (dashed lines) equilibrium values are indicated with black lines as well as minimum and maximum densities during oscillatory dynamics (dotted lines). The direction of selection is indicated with thick arrows (orange when negative and blue when positive) and ecological dynamics with double vertical arrows (yellow). The evolutionary endpoint is indicated with a circle (open circle in case it corresponds to an unstable ecological equilibrium, filled circle if it correspond to a stable ecological equilibrium). The direction of selection (bottom plots) is positive at low values of the trait (blue shaded area), negative at high values (pink shaded area) and either negative or positive at intermediate values of the trait (mixed shaded area), depending on which of the two ASSs the population is in. Parameter values as in Fig. 4.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaparro-Pedraza, P.C., de Roos, A.M. Ecological changes with minor effect initiate evolution to delayed regime shifts. Nat Ecol Evol 4, 412–418 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing