Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean

An Author Correction to this article was published on 15 April 2020

This article has been updated

Abstract

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 bc, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 bc. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 bc) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 bc, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium bc, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island’s early farmers until the first millennium bc, with the exception of an outlier from the third millennium bc, who had primarily North African ancestry and who—along with an approximately contemporary Iberian—documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium bc and, at present, no more than 56–62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geographical origins and temporal distribution of newly reported data.
Fig. 2: Overview of the genetic structure.
Fig. 3: Pairwise qpWave testing to group individuals.
Fig. 4: Distal modelling of ancestry proportions using qpAdm.

Data availability

All raw data are available at the European Nucleotide Archive under accession number PRJEB35980 and at https://reich.hms.harvard.edu/datasets.

Code availability

All custom code used in this study is provided at https://github.com/DReichLab/ADNA-Tools.

Change history

  • 15 April 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kristiansen, K. Re-theorising mobility and the formation of culture and language among the corded ware culture in Europe. Antiquity 91, 334–347 (2017).

    Google Scholar 

  4. 4.

    Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Alcover, J. A. The first Mallorcans: prehistoric colonization in the western Mediterranean. J. World Prehist. 21, 19–84 (2008).

    Google Scholar 

  9. 9.

    Ramis, D. in The Cambridge Prehistory of the Bronze and Iron Age Mediterranean (eds Knapp, A. B. & van Dommelen, P.) 40–56 (Cambridge Univ. Press, 2014).

  10. 10.

    Ramis, D. Animal exploitation in the early prehistory of the Balearic Islands. J. Isl. Coast. Archaeol. 13, 269–282 (2018).

    Google Scholar 

  11. 11.

    Plantalamor, L. & Van Strydonck, M. La Cronologia de la Prehistòria de Menorca: (Noves datacions de 14C). Treballs del Museu de Menorca Vol. 20 (Museu de Menorca, 1997).

  12. 12.

    Lull, V., Mico, R., Rihuete, C. I. & Risch, R. Los cambios sociales en las Islas Baleares a lo largo del II milenio. Cypsela 15, 123–148 (2004).

    Google Scholar 

  13. 13.

    Holt, E. in Forging Identities. The Mobility of Culture in Bronze Age Europe Vol. 1 (eds Suchowska-Ducke, P., Reiter, S. S. & Vandkilde, H.) 193–202 (British Archaeological Reports, 2015).

  14. 14.

    Ugas, G. L’alba Dei Nuraghi (Fabula, 2005).

  15. 15.

    Sestieri, A. M. B. in The Oxford Handbook of European Bronze Age (eds Harding, A. & Fokkens, H.) 653–667 (Oxford Univ. Press, 2013).

  16. 16.

    Sarno, S. et al. Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean. Sci. Rep. 7, 1984 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    PubMed  Google Scholar 

  20. 20.

    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Proc. R. Soc. B 370, 20130624 (2015).

    Google Scholar 

  22. 22.

    Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).

    PubMed  Google Scholar 

  31. 31.

    Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl Acad. Sci. USA 112, 11917–11922 (2015).

    PubMed  Google Scholar 

  33. 33.

    Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    PubMed  Google Scholar 

  39. 39.

    Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Martiniano, R. et al. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 7, 10326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Schiffels, S. et al. Iron age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun. 7, 10408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube basin. Curr. Biol. 27, 1801–1810 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Haber, M. et al. Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet. 101, 274–282 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jones, E. R. et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 27, 576–582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Saag, L. et al. Extensive farming in Estonia started through a sex-biased migration from the steppe. Curr. Biol. 27, 2185–2193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 15694 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Unterländer, M. et al. Ancestry and demography and descendants of Iron Age nomads of the Eurasian steppe. Nat. Commun. 8, 14615 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Amorim, C. E. G. et al. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 9, 3547 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Damgaard, P. et al. The first horse herders and the impact of Early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Google Scholar 

  52. 52.

    Fernandes, D. M. et al. A genomic Neolithic time transect of hunter-farmer admixture in central Poland. Sci. Rep. 8, 14879 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).

    PubMed  Google Scholar 

  54. 54.

    Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428–3433 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    van de Loosdrecht, M. et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    PubMed  Google Scholar 

  58. 58.

    Veeramah, K. R. et al. Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria. Proc. Natl Acad. Sci. USA 115, 3494–3499 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Zalloua, P. et al. Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza. Sci. Rep. 8, 17567 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    González-Fortes, G. et al. A western route of prehistoric human migration from Africa into the Iberian Peninsula. Proc. R. Soc. B 286, 20182288 (2019).

    PubMed  Google Scholar 

  62. 62.

    Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nat. Commun. 3, 1143 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Qin, P. & Stoneking, M. Denisovan ancestry in east Eurasian and native American populations. Mol. Biol. Evol. 32, 2665–2674 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ramis, D., Alcover, J. A., Coll, J. & Trias, M. The chronology of the first settlement of the Balearic Islands. J. Mediterr. Archaeol. 15, 3–24 (2002).

    Google Scholar 

  68. 68.

    Picornell, A., Gómez-Barbeito, L., Tomàs, C., Castro, J. A. & Ramon, M. M. Mitochondrial DNA HVRI variation in Balearic populations. Am. J. Phys. Anthropol. 128, 119–130 (2005).

    CAS  PubMed  Google Scholar 

  69. 69.

    Adams, S. M. et al. The genetic legacy of religious diversity and intolerance: paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula. Am. J. Hum. Genet. 83, 725–736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Solé-Morata, N. et al. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci. Rep. 7, 7341 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Raveane, A. et al. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in southern Europe. Sci. Adv. 5, eaaw3492 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Di Gaetano, C. et al. Differential Greek and northern African migrations to Sicily are supported by genetic evidence from the Y chromosome. Eur. J. Hum. Genet. 17, 91–99 (2009).

    PubMed  Google Scholar 

  73. 73.

    Sarno, S. et al. An ancient Mediterranean melting pot: investigating the uniparental genetic structure and population history of Sicily and southern Italy. PLoS ONE 9, e96074 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Holt, E. M. Economy and Environment in Complex Societies: A Case Study from Bronze Age Sardinia (Univ. Michigan, 2013).

  75. 75.

    Magoon, G. R. et al. Generation of high-resolution a priori Y-chromosome phylogenies using ‘next-generation’ sequencing data. Preprint at bioRxiv https://doi.org/10.1101/000802 (2013).

  76. 76.

    Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Matisoo-Smith, E. et al. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: a story of settlement, integration, and female mobility. PLoS ONE 13, e0190169 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Sikora, M. et al. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 10, e1004353 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Chiang, C. W. K. et al. Genomic history of the Sardinian population. Nat. Genet. 50, 1426–1434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Moorjani, P. et al. The history of African gene flow into southern Europeans, Levantines, and Jews. PLoS Genet. 7, e1001373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Olivieri, A. et al. Mitogenome diversity in Sardinians: a genetic window onto an Island’s past. Mol. Biol. Evol. 34, 1230–1239 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Morelli, L. et al. A comparison of Y-chromosome variation in Sardinia and Anatolia is more consistent with cultural rather than demic diffusion of agriculture. PLoS ONE 5, e10419 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. https://doi.org/10.1038/s41467-020-14523-6 (2020).

  86. 86.

    Sangmeister, E. Die datierung des rickstroms der Glockenbecker und ihre auswirkung auf die chronologie der Kupferzeit in Portugal. Palaeohistoria 12, 395–407 (1966).

    Google Scholar 

  87. 87.

    Holloway, R. The Archaeology of Ancient Sicily (Routledge, 2000).

  88. 88.

    D’Agata, A. L. Interactions between Aegean groups and local communities in Sicily in the Bronze Age: the evidence from pottery. Stud. Micenei ed Egeo-Anatolici 42, 61–83 (2000).

    Google Scholar 

  89. 89.

    Shelton, K. in The Oxford Handbook of the Bronze Age Aegean (ed. Kline, E.) 139–148 (Oxford Univ. Press, 2012).

  90. 90.

    Alberti, G. Issues in the absolute chronology of the Early-Middle Bronze Age transition in Sicily and southern Italy: a Bayesian radiocarbon view. J. Quat. Sci. 28, 630–640 (2013).

    Google Scholar 

  91. 91.

    Heyd, V. in The Oxford Handbook of the European Bronze Age (ed. Harding, A.) 47–67 (Oxford Univ. Press, 2013).

  92. 92.

    Sabatini, S. Late Bronze Age oxhide and oxhide-like ingots from areas other than the Mediterranean: problems and challenges. Oxf. J. Archaeol. 35, 29–45 (2016).

    Google Scholar 

  93. 93.

    Aubet, M. E. & Turton, M. The Phoenicians and the West: Politics, Colonies and Trade (Cambridge Univ. Press, 1997).

  94. 94.

    Pinhasi, R. et al. Optimal ancient DNA Yields from the inner ear part of the human petrous bone. PLoS ONE 10, e0129102 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).

    PubMed  Google Scholar 

  97. 97.

    Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Behar, D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Google Scholar 

  102. 102.

    Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Lohse, J. C., Madsen, D. B., Culleton, B. J. & Kennett, D. J. Isotope paleoecology of episodic mid-to-late Holocene bison population expansions in the southern Plains, U.S.A. Quat. Sci. Rev. 102, 14–26 (2014).

    Google Scholar 

  104. 104.

    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Google Scholar 

  105. 105.

    Santos, G. M., Southon, J. R., Druffel-Rodriguez, K. C., Griffin, S. & Mazon, M. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at Kccams at the University of California, Irvine. Radiocarbon 46, 165–173 (2004).

    CAS  Google Scholar 

  106. 106.

    Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Google Scholar 

  107. 107.

    Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    CAS  Google Scholar 

  108. 108.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  109. 109.

    van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).

    PubMed  Google Scholar 

  110. 110.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    CAS  PubMed  Google Scholar 

  113. 113.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to the memory of S. Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on 10 March 2019. We thank Z. Zhang for database support; the Soprintendenza BBCCAA Palermo and R. Schicchi (director of Museum of Castelbuono) for facilitating access to important skeletal materials. D.M.F. was supported by an Irish Research Council grant GOIPG/2013/36. Radiocarbon work was supported in part by the NSF Archaeometry program BCS-1460369 (to D.J.K. and B.J.C). C.L.-F. was supported by Obra Social La Caixa and by FEDER-MINECO (BFU2015-64699-P and PGC2018-095931-B-100). D.C. was supported by grant 20177PJ9XF MIUR PRIN 2017. D.Reich is an Investigator of the Howard Hughes Medical Institute, and his ancient-DNA laboratory work was supported by National Science Foundation HOMINID grant BCS-1032255, a National Institutes of Health grant GM100233, an Allen Discovery Center grant, and grant no. 61220 from the John Templeton Foundation.

Author information

Affiliations

Authors

Contributions

D.M.F., D.Reich and R.P. conceived the study. D.M.F., E.C., C.C., G.C., M.C., V.F., M.Lozano, E.M., M.Michel, R.M.M., D.Ramis, M.R.P., V.S., P.S., L.T., M.T.-N., C.L.-F., L.S., D.C., A.C., M.Lucci, G.G., F.C., G.S. and R.P. excavated, assembled and/or studied the osteological material. D.M.F., O.C., N.R., N.B., M.F., B.G., M.Lari, M.Micheletti, A.Modi, M.N., F.C., J.O., K.A.S., K.S., K.M., C.S., K.T.Ö. and S.V. performed laboratory work under the supervision of N.R., D.C. and R.P. J.C. provided computing resources. B.J.C. performed radiocarbon analysis under the supervision of D.J.K. D.M.F., I.O., R.B., S.M. and M.Mah performed bioinformatics and population genetics analysis with input from A.Mittnik, I.L., N.P. and D.Reich.

Corresponding authors

Correspondence to Daniel M. Fernandes or David Caramelli or Ron Pinhasi or David Reich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–27, notes and references, and legends for Supplementary Data 1–6.

Reporting Summary

Supplementary Data

Supplementary Data 1–6: six supplementary tables in Excel (a single file with six tabs).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.M., Mittnik, A., Olalde, I. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat Ecol Evol 4, 334–345 (2020). https://doi.org/10.1038/s41559-020-1102-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing