Abstract
Sex is common among eukaryotes, but entails considerable costs. The selective conditions that drive the evolutionary maintenance of sexual reproduction remain an open question. One long-standing explanation is that sex and recombination facilitate adaptation to fluctuating environmental conditions, although the genetic mechanisms that underlie such a benefit have not been empirically observed. In this study, we compare the dynamics and fitness effects of mutations in sexual and asexual diploid populations of the yeast Saccharomyces cerevisiae during adaptation to a fluctuating environment. While we find no detectable difference in the rate of adaptation between sexual and asexual populations, only the former evolve high fitness mutations in parallel, a genetic signature of adaptation. Using genetic reconstructions and fitness assays, we demonstrate that evolved, overdominant mutations can be beneficial in asexual populations, but maintained at lower frequencies in sexual populations due to segregation load. Overall these data show that sex alters the molecular basis of adaptation in diploids, and confers both costs and benefits.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Embracing Complexity: Yeast Evolution Experiments Featuring Standing Genetic Variation
Journal of Molecular Evolution Open Access 08 February 2023
-
Loss of Heterozygosity and Its Importance in Evolution
Journal of Molecular Evolution Open Access 08 February 2023
-
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community
The ISME Journal Open Access 22 January 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Raw sequencing reads used to generate the data in Figs. 2–4 have been deposited in GenBank under the Bioproject ID: PRJNA530331. Custom scripts used for the parallel evolution analysis are available at GitHub (https://github.com/woodlaur189/Parall-expect).
References
Bell, G. The Masterpeice of Nature (Univ. California Press, 1982).
Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261 (2002).
Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, 1930).
Muller, H. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).
Crow, J. F. & Kimura, M. Evolution in sexual and asexual populations. Am. Nat. 99, 439–450 (1965).
Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).
Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).
Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).
Goddard, M. R., Godfray, H. C. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).
Gray, J. C. & Goddard, M. R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol. Biol. 12, 43 (2012).
Gray, J. C. & Goddard, M. R. Gene-flow between niches facilitates local adaptation in sexual populations. Ecol. Lett. 15, 955–962 (2012).
Zeyl, C. & Bell, G. The advantage of sex in evolving yeast populations. Nature 388, 465–468 (1997).
McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531, 233–236 (2016).
Marad, D. A., Buskirk, S. W. & Lang, G. I. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat. Ecol. Evol. 2, 882–889 (2018).
Sellis, D., Kvitek, D. J., Dunn, B., Sherlock, G. & Petrov, D. A. Heterozygote advantage is a common outcome of adaptation in Saccharomyces cerevisiae. Genetics 203, 1401–1413 (2016).
Lewontin, R. C. & Hubby, J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).
Maynard-Smith, J. The Evolution of Sex (Cambridge Univ. Press, 1978).
Van Valen, L. A new evolutionary law. Evolut. Theory 1, 1–30 (1973).
Barnosky, A. D. Distinguishing the effects of the Red Queen and Court Jester on miocene mammal evolution in the Northern Rocky Mountains. J. Vertebr. Paleontol. 21, 172–185 (2001).
Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009).
Charlesworth, B. Recombination modification in a fluctuating environment. Genetics 83, 181–195 (1976).
Shonn, M. A., McCarroll, R. & Murray, A. W. Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev. 16, 1659–1671 (2002).
de Visser, J., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).
Chou, H. H., Chiu, H. C., Delaney, N. F., Segre, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).
Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).
Mandegar, M. A. & Otto, S. P. Mitotic recombination counteracts the benefits of genetic segregation. Proc. Biol. Sci. R 274, 1301–1307 (2007).
Schluter, D., Clifford, E. A., Nemethy, M. & McKinnon, J. S. Parallel evolution and inheritance of quantitative traits. Am. Nat. 163, 809–822 (2004).
McDonald, M. J., Gehrig, S. M., Meintjes, P. L., Zhang, X. X. & Rainey, P. B. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics 183, 1041–1053 (2009).
Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 100, 1072–1077 (2003).
Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).
Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).
Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).
Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999).
Zhang, J. Z. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat. Genet. 38, 819–823 (2006).
Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).
Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 1987–1992 (2011).
Fisher, K. J., Buskirk, S. W., Vignogna, R. C., Marad, D. A. & Lang, G. I. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet. 14, e1007396 (2018).
Sellis, D., Callahan, B. J., Petrov, D. A. & Messer, P. W. Heterozygote advantage as a natural consequence of adaptation in diploids. Proc. Natl Acad. Sci. USA 108, 20666–20671 (2011).
Zeyl, C., Vanderford, T. & Carter, M. An evolutionary advantage of haploidy in large yeast populations. Science 299, 555–558 (2003).
Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Harper and Row, 1970).
Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).
DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).
Horwitz, A. A. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1, 88–96 (2015).
Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).
Acknowledgements
J.-Y.L. was supported by Academia Sinica of Taiwan (grant nos. AS-IA-105-L01 and AS-TP-107-ML06) and the Taiwan Ministry of Science and Technology (grant no. MOST107-2321-B-001-010). M.J.M. was supported by ARC Discovery (grant no. DP180102161) and an ARC Future Fellowship (no. FT170100441).
Author information
Authors and Affiliations
Contributions
J.-Y.L., S.-L.C. and M.J.M. conceived and designed the study. S.-L.C., J.-C.C. and M.J.M. carried out experiments. J.-Y.L., S.-L.C., L.C.W. and M.J.M. analysed the data.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–6, rationalization of invasion assays used to compare heterozygotes and homozygotes and Tables 1–3.
Supplementary Data 1
DNA sequence data for all genetic variants called in this project.
Rights and permissions
About this article
Cite this article
Leu, JY., Chang, SL., Chao, JC. et al. Sex alters molecular evolution in diploid experimental populations of S. cerevisiae. Nat Ecol Evol 4, 453–460 (2020). https://doi.org/10.1038/s41559-020-1101-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-020-1101-1
This article is cited by
-
Embracing Complexity: Yeast Evolution Experiments Featuring Standing Genetic Variation
Journal of Molecular Evolution (2023)
-
Loss of Heterozygosity and Its Importance in Evolution
Journal of Molecular Evolution (2023)
-
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community
The ISME Journal (2022)
-
Multiple mechanisms drive genomic adaptation to extreme O2 levels in Drosophila melanogaster
Nature Communications (2021)