Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals

An Author Correction to this article was published on 20 February 2020

This article has been updated

Abstract

The evolution of semi-independent modules is hypothesized to underlie the functional diversification of serially repeating (metameric) structures. The mammal vertebral column is a classic example of a metameric structure that is both modular, with well-defined morphological regions, and functionally differentiated. How the evolution of regions is related to their functional differentiation in the forerunners of mammals remains unclear. Here we gathered morphometric and biomechanical data on the presacral vertebrae of two extant species that bracket the synapsid–mammal transition and use the relationship between form and function to predict functional differentiation in extinct non-mammalian synapsids. The origin of vertebral functional diversity does not correlate with the evolution of new regions but appears late in synapsid evolution. This decoupling of regions from functional diversity implies that an adaptive trigger is needed to exploit existing modularity. We propose that the release of axial respiratory constraints, combined with selection for novel mammalian behaviours in Late Triassic cynodonts, drove the functional divergence of pre-existing morphological regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of morphological and functional variation.
Fig. 2: Relationship between regionalization of morphology and function.
Fig. 3: Morphological heterogeneity versus functional heterogeneity.
Fig. 4: Estimated intervertebral joint functional diversity.

Similar content being viewed by others

Data availability

Raw data are available through Harvard Dataverse: https://doi.org/10.7910/DVN/YMUHLU.

Code availability

Code required for calculating functional distributions is provided in the supplementary materials.

Change history

References

  1. Raff, R. A. The Shape of Life: Genes, Development, and the Evolution of Animal Form (Univ. Chicago Press, 2012).

  2. Cheverud, J. M. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110, 155–171 (1984).

    CAS  PubMed  Google Scholar 

  3. Asher, R., Lin, K., Kardjilov, N. & Hautier, L. Variability and constraint in the mammalian vertebral column. J. Evol. Biol. 24, 1080–1090 (2011).

    CAS  PubMed  Google Scholar 

  4. Jones, K. E., Benitez, L., Angielczyk, K. D. & Pierce, S. E. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol. Biol. 18, 172 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Hughes, N. C. Trilobite body patterning and the evolution of arthropod tagmosis. Bioessays 25, 386–395 (2003).

    PubMed  Google Scholar 

  6. Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).

    Google Scholar 

  7. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Google Scholar 

  8. Buchholtz, E. A. in From Clone to Bone: The Synergy of Morphological and Molecular Tools in Palaeobiology (eds Asher, R. J. & Müller, J.) 230–256 (Cambridge Univ. Press, 2012).

  9. Young, N. M. & Hallgrimsson, B. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59, 2691–2704 (2005).

    PubMed  Google Scholar 

  10. Hall, B. K. in Evolutionary Biology Vol. 28 (eds Hecht, M. K. et al.) 1–37 (Springer, 1995).

  11. Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    PubMed  Google Scholar 

  12. Wainwright, P. C. Functional versus morphological diversity in macroevolution. Annu. Rev. Ecol. Evol. Syst. 38, 381–401 (2007).

    Google Scholar 

  13. Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. Many-to-one mapping of form to function: a general principle in organismal design? Integr. Comp. Biol. 45, 256–262 (2005).

    PubMed  Google Scholar 

  14. Randau, M., Cuff, A. R., Hutchinson, J. R., Pierce, S. E. & Goswami, A. Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories. Org. Divers. Evol. 17, 305–319 (2017).

    Google Scholar 

  15. Evans, K. M., Waltz, B. T., Tagliacollo, V. A., Sidlauskas, B. L. & Albert, J. S. Fluctuations in evolutionary integration allow for big brains and disparate faces. Sci. Rep. 7, 40431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Solounias, N. The remarkable anatomy of the giraffe’s neck. J. Zool. 247, 257–268 (1999).

    Google Scholar 

  17. Schmitt, D., Rose, M. D., Turnquist, J. E. & Lemelin, P. Role of the prehensile tail during ateline locomotion: experimental and osteological evidence. Am. J. Phys. Anthropol. 126, 435–446 (2005).

    PubMed  Google Scholar 

  18. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  19. Carroll, R. L. Vertebrate Paleontology and Evolution (W. H. Freeman and Company, 1988).

  20. Jones, K. E. et al. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science 361, 1249–1252 (2018).

    CAS  PubMed  Google Scholar 

  21. Head, J. J. & Polly, P. D. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520, 86–89 (2015).

    CAS  PubMed  Google Scholar 

  22. Böhmer, C. Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida. Zool. Lett. 3, 8 (2017).

    Google Scholar 

  23. Long, J. H., Pabst, D. A., Shepherd, W. R. & McLellan, W. A. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200, 65–81 (1997).

    PubMed  Google Scholar 

  24. Oliver, J. D., Jones, K. E., Hautier, L., Loughry, W. J. & Pierce, S. E. Vertebral bending mechanics and xenarthrous morphology in the nine-banded armadillo (Dasypus novemcinctus). J. Exp. Biol. 219, 2991–3002 (2016).

    PubMed  Google Scholar 

  25. Jeffcott, L. B. & Dalin, G. Natural rigidity of the horse’s backbone. Equine Vet. J. 12, 101–108 (1980).

    CAS  PubMed  Google Scholar 

  26. Gál, J. M. Mammalian spinal biomechanics 1: static and dynamic mechanical-properties of intact intervertebral joints. J. Exp. Biol. 174, 247–280 (1993).

    PubMed  Google Scholar 

  27. Jenkins, F. A. & Goslow, G. The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus). J. Morphol. 175, 195–216 (1983).

    PubMed  Google Scholar 

  28. Carrier, D. R. The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint. Paleobiology 13, 326–341 (1987).

    Google Scholar 

  29. Hopson, J. A. in Great Transformations in Vertebrate Evolution (eds Dial, K. P. et al.) 125–141 (Univ. Chicago Press, 2015).

  30. Molnar, J. L., Pierce, S. E. & Hutchinson, J. R. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). J. Exp. Biol. 217, 758–768 (2014).

    PubMed  Google Scholar 

  31. Macpherson, J. M. & Ye, Y. The cat vertebral column: stance configuration and range of motion. Exp. Brain Res. 119, 324–332 (1998).

    CAS  PubMed  Google Scholar 

  32. Carrier, D. Activity of the hypaxial muscles during walking in the lizard Iguana iguana. J. Exp. Biol. 152, 453–470 (1990).

    CAS  PubMed  Google Scholar 

  33. Montuelle, S. J., Herrel, A., Libourel, P.-A., Reveret, L. & Bels, V. L. Separating the effects of prey size and speed on the kinematics of prey capture in the omnivorous lizard Gerrhosaurus major. J. Comp. Physiol. A 196, 491–499 (2010).

    Google Scholar 

  34. Mosauer, W. On the locomotion of snakes. Science 76, 583–585 (1932).

    CAS  PubMed  Google Scholar 

  35. Moon, B. R. Testing an inference of function from structure: snake vertebrae do the twist. J. Morphol. 241, 217–225 (1999).

    CAS  PubMed  Google Scholar 

  36. Kemp, T. S. The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool. J. Linn. Soc. 147, 473–488 (2006).

    Google Scholar 

  37. Schilling, N. & Hackert, R. Sagittal spine movements of small therian mammals during asymmetrical gaits. J. Exp. Biol. 209, 3925–3939 (2006).

    PubMed  Google Scholar 

  38. Alexander, R. M., Dimery, N. J. & Ker, R. F. Elastic structures in the back and their role in galloping in some mammals. J. Zool. 207, 467–482 (1985).

    Google Scholar 

  39. Jones, K. Preliminary data on the effect of osseous anatomy on ex vivo joint mobility in the equine thoracolumbar region. Equine Vet. J. 48, 502–508 (2015).

    PubMed  Google Scholar 

  40. Townsend, H. G. G. & Leach, D. H. Relationship between intervertebral joint morphology and mobility in the equine thoracolumbar spine. Equine Vet. J. 16, 461–465 (1984).

    CAS  PubMed  Google Scholar 

  41. Kambic, R. E., Biewener, A. A. & Pierce, S. E. Experimental determination of three-dimensional cervical joint mobility in the avian neck. Front. Zool. 14, 37 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Karakasiliotis, K., Schilling, N., Cabelguen, J.-M. & Ijspeert, A. J. Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics. Biol. Cybern. 107, 529–544 (2013).

    PubMed  Google Scholar 

  43. Frolich, L. M. & Biewener, A. A. Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. J. Exp. Biol. 162, 107–130 (1992).

    Google Scholar 

  44. Angielczyk, K. D. & Kammerer, C. F. in Handbook of Zoology: Mammalia: Mammalian Evolution, Diversity, and Systematics (eds Zachos, F. E. & Asher, R. J.) 117–198 (De Gruyter, 2018).

  45. Bennett, S. C. Aerodynamics and thermoregulatory function of the dorsal sail of Edaphosaurus. Paleobiology 22, 496–506 (1996).

    Google Scholar 

  46. Huttenlocker, A. K., Rega, E. & Sumida, S. S. Comparative anatomy and osteohistology of hyperelongate neural spines in the Sphenacodontids Sphenacodon and Dimetrodon (Amniota: Synapsida). J. Morphol. 271, 1407–1421 (2010).

    PubMed  Google Scholar 

  47. Rega, E. A. et al. Healed fractures in the neural spines of an associated skeleton of Dimetrodon: implications for dorsal sail morphology and function. Fieldiana Life Earth Sci. 5, 104–111 (2012).

    Google Scholar 

  48. Sumida, S. S. Vertebral Morphology, Alternation of Neural Spine Height, and Structure in Permo-Carboniferous Tetrapods, and a Reappraisal of Primitive Modes of Terrestrial Locomotion (Univ. California Press, 1990).

  49. Jones, K. E., Angielczyk, K. D. & Pierce, S. E. Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column. Nat. Commun. 10, 5071 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Lungmus, J. K. & Angielczyk, K. D. Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida). Proc. Natl Acad. Sci. USA 116, 6903–6907 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rubidge, B. S. & Sidor, C. A. Evolutionary patterns among Permo-Triassic therapsids. Annu. Rev. Ecol. Syst. 32, 449–480 (2001).

    Google Scholar 

  52. Erwin, D. H. Novelty and innovation in the history of life. Curr. Biol. 25, R930–R940 (2015).

    CAS  PubMed  Google Scholar 

  53. Erwin, D. H. Early metazoan life: divergence, environment and ecology. Phil. Trans. R. Soc. B 370, 20150036 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Roberts, S. F. et al. Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates. Front. Robot. AI 1, 12 (2014).

    Google Scholar 

  56. Ruben, J., Hillenius, W., Kemp, T., Quick, D. & Chinsamy-Turan, A. in Forerunners of Mammals: Radiation, Histology, Biology (ed. Chinsamy-Turan, A.) 273–286 (Indiana Univ. Press, 2011).

  57. Bennett, A. F. & Ruben, J. A. Endothermy and activity in vertebrates. Science 206, 649–654 (1979).

    CAS  PubMed  Google Scholar 

  58. Buchholtz, E. A. et al. Fixed cervical count and the origin of the mammalian diaphragm. Evol. Dev. 14, 399–411 (2012).

    PubMed  Google Scholar 

  59. Hirasawa, T. & Kuratani, S. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J. Anat. 222, 504–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Perry, S. F., Similowski, T., Klein, W. & Codd, J. R. The evolutionary origin of the mammalian diaphragm. Respir. Physiol. Neurobiol. 171, 1–16 (2010).

    PubMed  Google Scholar 

  61. Sues, H. D. & Jenkins, F. A., Jr. in Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds and Reptiles (eds Carrano, M. T. et al.) 114–152 (Univ. Chicago Press, 2006).

  62. Kühne, W. The Liassic therapsid Oligokyphus (British Museum (Natural History), 1956).

  63. Guignard, M. L., Martinelli, A. G. & Soares, M. B. The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts. PLoS ONE 14, e0216672 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Oliveira, T. V., Schultz, C. L. & Soares, M. B. A partial skeleton of Chiniquodon (Cynodontia, Chiniquodontidae) from the Brazilian Middle Triassic. Rev. Bras. Paleontol. 12, 113–122 (2009).

    Google Scholar 

  65. Jenkins, F. A.Jr. The Chanares (Argentina) Triassic reptile fauna VII. The postcranial skeleton of the transversodontid Massetognathus pascuali (Therapsida, Cynodontia). Breviora 352, 1–28 (1970).

    Google Scholar 

  66. Jenkins, F. A. Jr. The postcranial skeleton of African cynodonts. Bull. Peabody Mus. Nat. Hist. 36, 1–216 (1971).

    Google Scholar 

  67. Jenkins, F. A. J. & Parrington, F. R. Postcranial skeletons of Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Phil. Trans. R. Soc. B 273, 387–431 (1976).

    PubMed  Google Scholar 

  68. Rey, K. et al. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades. eLife 6, e28589 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Huttenlocker, A. K. & Farmer, C. Bone microvasculature tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners. Curr. Biol. 27, 48–54 (2017).

    CAS  PubMed  Google Scholar 

  70. Benoit, J., Manger, P. & Rubidge, B. Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Sci. Rep. 6, 25604 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Benoit, J. et al. The evolution of the maxillary canal in probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors. J. Mamm. Evol. https://doi.org/10.1007/s10914-019-09467-8 (2019).

  72. Benoit, J., Abdala, F., Manger, P. R. & Rubidge, B. S. The sixth sense in mammalian forerunners: variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids. Acta Palaeontol. Pol. 61, 777–789 (2016).

    Google Scholar 

  73. LeBlanc, A. R., Brink, K. S., Whitney, M. R., Abdala, F. & Reisz, R. R. Dental ontogeny in extinct synapsids reveals a complex evolutionary history of the mammalian tooth attachment system. Proc. R. Soc. B 285, 20181792 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Guignard, M. L., Martinelli, A. G. & Soares, M. B. Reassessment of the postcranial anatomy of Prozostrodon brasiliensis and implications for postural evolution of non-mammaliaform cynodonts. J. Vertebr. Paleontol. 38, e1511570 (2018).

    Google Scholar 

  75. Hillenius, W. J. Septomaxilla of nonmammalian synapsids: soft‐tissue correlates and a new functional interpretation. J. Morphol. 245, 29–50 (2000).

    CAS  PubMed  Google Scholar 

  76. Zhou, C.-F., Wu, S., Martin, T. & Luo, Z.-X. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500, 163–167 (2013).

    Google Scholar 

  77. Gleizes, V., Viguier, E., Feron, J., Canivet, S. & Lavaste, F. Effects of freezing on the biomechanics of the intervertebral disc. Surg. Radiol. Anat. 20, 403–407 (1998).

    CAS  PubMed  Google Scholar 

  78. Tan, J. S. & Uppuganti, S. Cumulative multiple freeze–thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine. Spine 37, E1238–E1242 (2012).

  79. ImageJ (National Institutes of Health, 2004).

  80. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).

  81. Collyer, M. L. & Adams, D. C. RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).

    Google Scholar 

  82. Oksanen, J. et al. Vegan: Community ecology package. R version 1.17-4 http://cran.r-project.org (2010).

  83. Adams, D. C. & Otarola-Castillo, E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Google Scholar 

  84. Jones, K. E. et al. Dryad Data from: fossils reveal the complex evolutionary history of the mammalian regionalized spine. Dryad Digital Repository https://doi.org/10.5061/dryad.jm820mg (2018).

  85. Kammerer, C. F. Revision of the Tanzanian dicynodont Dicynodon huenei (Therapsida: Anomodontia) from the Permian Usili formation. PeerJ 7, e7420 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Hanslowe, J. Josimovich, B. Falk and R. Reed at the United States Geological Survey Daniel Beard Center, Invasive Species Science Branch, for providing the tegu cadavers used in this study. The cat cadavers were purchased directly from Carolina Biological. For advice on the functional distribution method we thank D. Polly and for general research support we thank all members of the Pierce Lab, particularly P. Lai. This research was supported by an American Association of Anatomists Fellowship (K.E.J.), the Harvard College Research Program and Museum of Comparative Zoology Grants-In-Aid of Undergraduate Research (S.G.), Harvard University (S.E.P), NSF EAR-1524938 (K.D.A.) and NSF EAR-1524523 (S.E.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.P. and K.E.J. conceived and designed the study. S.G. conducted the ex vivo bending experiments in consultation with K.E.J. and S.E.P. and in partial fulfilment of an undergraduate senior thesis. K.E.J. analysed the morphological and functional data, interpreted the data, made the figures and drafted the manuscript. S.E.P. interpreted the data and drafted the manuscript. All authors edited the manuscript and gave final approval for publication.

Corresponding authors

Correspondence to Katrina E. Jones or Stephanie E. Pierce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Figs. 1–4 and code.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, K.E., Gonzalez, S., Angielczyk, K.D. et al. Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals. Nat Ecol Evol 4, 470–478 (2020). https://doi.org/10.1038/s41559-020-1094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1094-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing