Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Ensuring effective implementation of the post-2020 global biodiversity targets

Abstract

Biodiversity underpins the fundamental elements for human well-being including food security, human health and access to clean water. In 2010, the Aichi Targets were adopted by world leaders to address the crisis of biodiversity loss. Despite conservation efforts, none of the Aichi Targets have been fully met. However, comprehensive analysis of the reasons for failure in terms of implementation mechanisms is, to date, rare and limited in scope. Here, we demonstrate that most parties did not set effective national targets in accordance with the Aichi Targets, and investments, knowledge and accountability for biodiversity conservation have been inadequate to enable effective implementation. We recommend that the new global targets under the post-2020 Global Biodiversity Framework should be adopted by parties as the minimum national targets to achieve the 2050 Vision. We propose that financial resources for biodiversity conservation are substantially increased through a variety of sources, including the deployment of new economic instruments such as payments for ecosystem services. In addition, science–policy interfaces at all levels need to be strengthened to integrate scientific, Indigenous and local knowledge to support decision-making. We suggest that a compliance and accountability mechanism, based on monitoring systems, is created to provide transparent and credible review of parties’ implementation of the new global targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The chronology and current implementation processes of global biodiversity targets.
Fig. 2: Enhanced implementation of global biodiversity targets.

Similar content being viewed by others

References

  1. Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article  PubMed  Google Scholar 

  5. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets UNEP/CBD/COP/DEC/X/2 (CBD, 2010).

  6. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  7. Global Biodiversity Outlook 5 (CBD, 2020).

  8. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).

  9. Update of the Zero Draft of the Post-2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).

  10. Butchart, S. H. M., Marco, M. D. & Watson, J. E. M. Formulating smart commitments on biodiversity: lessons from the Aichi Targets. Conserv. Lett. 9, 457–468 (2016).

    Article  Google Scholar 

  11. Whitehorn, P. R. et al. Mainstreaming biodiversity: a review of national strategies. Biol. Conserv. 235, 157–163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhatt, R. et al. Uneven use of biodiversity indicators in fifth national reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).

    Article  Google Scholar 

  13. Doherty, T. S. et al. Expanding the role of targets in conservation policy. Trends Ecol. Evol. 33, 809–812 (2018).

    Article  PubMed  Google Scholar 

  14. Stuart, S. N. & Collen, B. in Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen B. et al.) Ch. 18, 421–438 (John Wiley, 2013).

  15. Ulloa, A. M., Jax, K. & Karlsson-Vinkhuyzen, S. I. Enhancing implementation of the Convention on Biological Diversity: a novel peer-review mechanism aims to promote accountability and mutual learning. Biol. Conserv. 217, 371–376 (2018).

    Article  Google Scholar 

  16. Analysis of the Contribution of Targets Established by Parties and Progress towards the Aichi Biodiversity Targets CBD/SBI/3/2/Add.2 (CBD, 2020).

  17. Rice, J. et al. (eds) The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas (IPBES, 2018).

  18. Pisupati, B. & Prip, C. Interim Assessment of Revised National Biodiversity Strategies and Action Plans (NBSAPs) (UNEP-WCMC, Fridtjof Nansen Institute, 2015).

  19. Prip, C. & Pisupati, B. Assessment of Post-2010 National Biodiversity Strategies and Action Plans (UNEP, 2018).

  20. Kok, M. et al. From Paris to Beijing: Insights Gained from the UNFCCC Paris Agreement for the Post-2020 Global Biodiversity Framework (PBL Netherlands Environmental Assessment Agency, 2018).

  21. von Bieberstein, K. R. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).

    Article  Google Scholar 

  22. Comprehensive and Participatory Process for the Preparation of the Post-2020 Global Biodiversity Framework CBD/COP/DEC/14/34 (CBD, 2018).

  23. Neumann, B. & Unger, S. From voluntary commitments to ocean sustainability. Science 363, 35–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Chang. 20, 550–557 (2010).

    Article  Google Scholar 

  25. National Laws for Implementing the Convention (Convention on International Trade in Endangered Species of Fauna and Flora, accessed 7 September 2019); https://cites.org/legislation

  26. Degree of Implementation of International Instruments Aiming to Combat Illegal, Unreported and Unregulated Fishing (Global SDG Indicators Database, accessed 7 September 2019); https://unstats.un.org/sdgs/indicators/database/

  27. Pattberg, P., Widerberg, O. & Kok, M. T. J. Towards a global biodiversity action agenda. Glob. Policy 10, 385–390 (2019).

    Article  Google Scholar 

  28. Nocito, E. S., Brooks, C. M. & Strong, A. L. Gazing at the crystal ball: predicting the future of marine protected areas through voluntary commitments. Front. Mar. Sci. 6, 835 (2020).

    Article  Google Scholar 

  29. Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource Needs for Implementing the Strategic Plan for Biodiversity 2011-2020 (CBD, 2014).

  31. Wintle, B. A. et al. Spending to save: what will it cost to halt Australia’s extinction crisis? Conserv. Lett. 12, e12682 (2019).

    Article  Google Scholar 

  32. McCarthy, D. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Hein, L., Miller, D. C. & Groot, R. Payments for ecosystem services and the financing of global biodiversity conservation. Curr. Opin. Env. Sust. 5, 87–93 (2013).

    Article  Google Scholar 

  34. Estimation of Resources Needed for Implementing the Post-2020 Global Biodiversity Framework (CBD, 2020).

  35. Biodiversity: Finance and the Economic and Business Case for Action. Report Prepared for the G7 Environment Ministers’ Meeting, 5–6 May 2019 (OECD, 2019).

  36. Barbier, E. B., Lozano, R., Rodríguez, C. M. & Troëng, S. Adopt a carbon tax to protect tropical forests. Nature 578, 213–216 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. A Comprehensive Overview of Global Biodiversity Finance (OECD, 2020); https://www.oecd.org/environment/resources/biodiversity/report-a-comprehensive-overview-of-global-biodiversity-finance.pdf

  38. Farooqui, M. F. & Schultz, M. Co-chairs’ Summary of Dialogue Seminar on Scaling up Biodiversity Finance, Quito 6-9 March 2012 (CBD, 2012).

  39. Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karki, M. et al. (eds) The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific (IPBES, 2018).

  42. Mastrángelo, M. E. et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2, 1115–1121 (2019).

    Article  Google Scholar 

  43. Mehring, M., Bernard, B., Hummel, D., Liehr, S. & Lux, A. Halting biodiversity loss: how social–ecological biodiversity research makes a difference. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13, 172–180 (2017).

    Article  Google Scholar 

  44. Local Biodiversity Outlooks: Indigenous Peoples’ and Local Communities’ Contributions to the Implementation of the Strategic Plan for Biodiversity 2011-2020 (Forest Peoples Programme, 2016).

  45. Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. Ambio 43, 579–591 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sutherland, W. J., Gardner, T. A., Hiader, L. J. & Dicks, L. V. How can local and traditional knowledge be effectively incorporated into international assessments? Oryx 48, 1–2 (2014).

    Article  Google Scholar 

  47. Gadamus, L. et al. Building an indigenous evidence-base for tribally-led habitat conservation policies. Mar. Policy 62, 116–124 (2015).

    Article  Google Scholar 

  48. Löfmarck, E. & Lidskog, R. Bumping against the boundary: IPBES and the knowledge divide. Environ. Sci. Policy 69, 22–28 (2017).

    Article  Google Scholar 

  49. Farwig, N. et al. Bridging science and practice in conservation: deficits and challenges from a research perspective. Basic Appl. Ecol. 24, 1–8 (2017).

    Article  Google Scholar 

  50. Beck, S., Esguerra, A. & Goerg, C. The co-production of scale and power: the case of the Millennium Ecosystem Assessment and the Intergovernmental Platform on Biodiversity and Ecosystem Services. J. Environ. Pol. Plan. 19, 534–549 (2014).

    Article  Google Scholar 

  51. Key Finding from the Four IPBES Regional Assessments of Biodiversity and Ecosystem Services CBD/COP/14/INF/24 (CBD, 2018).

  52. Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

    Article  Google Scholar 

  53. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  54. Rounsevell, M. et al. (eds) The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia (IPBES, 2018).

  55. Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).

    Article  Google Scholar 

  57. Morgera, E. & Tsioumani, E. Yesterday, today, and tomorrow: looking afresh at the Convention on Biological Diversity. Yearb. Int. Environ. Law 21, 3–40 (2011).

    Article  Google Scholar 

  58. Lemieux, C. J. et al. How the race to achieve Aichi Target 11 could jeopardize the effective conservation of biodiversity in Canada and beyond. Mar. Policy 99, 312–323 (2019).

    Article  Google Scholar 

  59. Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Han, X. M. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).

    Article  Google Scholar 

  61. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018).

  63. Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Article  Google Scholar 

  64. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. O'Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Article  Google Scholar 

  70. Lindsey, P. A. et al. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl Acad. Sci. USA 115, E10788–E10796 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Geldmann, J. et al. Changes in protected area management effectiveness over time: A global analysis. Biol. Conserv. 1991, 692–699 (2015).

    Article  Google Scholar 

  72. Santini, L., Saura, S. & Rondinini, C. Connectivity of the global network of protected areas. Divers. Distrib. 22, 199–211 (2016).

    Article  Google Scholar 

  73. Stephenson, P. J. et al. Overcoming the challenges to conservation monitoring: integrating data from in-situ reporting and global data sets to measure impact and performance. Biodiversity 16, 68–85 (2015).

    Article  Google Scholar 

  74. Xu, H. G. et al. Optimized monitoring sites for detection of biodiversity trends in China. Biodivers. Conserv. 26, 1959–1971 (2017).

    Article  Google Scholar 

  75. Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) frameworks. Front. Mar. Sci. 5, 211 (2018).

    Article  Google Scholar 

  76. Mairota, P. et al. Using landscape structure to develop quantitative baselines for protected area monitoring. Ecol. Indic. 33, 82–95 (2013).

    Article  Google Scholar 

  77. Schmeller, D. S. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790 (2017).

    Article  Google Scholar 

  78. Failler, P., Touron-Gardic, G. & Traore, M. Is Aichi Target 11 progress correctly measured for developing countries? Trends Ecol. Evol. 34, 875–879 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Major Science and Technology Projects of China (grant no. 2018YFC0507206 and 2018YFC0507202).

Author information

Authors and Affiliations

Authors

Contributions

H.X. conceived the idea. Y.C., D.Y. and H.X. designed the study. H.X., Y.C., D.Y., M.C, Y.H., M.G. and H.M.P. collected and analysed data, and wrote and edited the manuscript.

Corresponding author

Correspondence to Haigen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Benis N. Egoh, Martine Maron and Melodie McGeoch for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Cao, Y., Yu, D. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat Ecol Evol 5, 411–418 (2021). https://doi.org/10.1038/s41559-020-01375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01375-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene