Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts of hypoxic events surpass those of future ocean warming and acidification

Abstract

Over the past decades, three major challenges to marine life have emerged as a consequence of anthropogenic emissions: ocean warming, acidification and oxygen loss. While most experimental research has targeted the first two stressors, the last remains comparatively neglected. Here, we implemented sequential hierarchical mixed-model meta-analyses (721 control–treatment comparisons) to compare the impacts of oxygen conditions associated with the current and continuously intensifying hypoxic events (1–3.5 O2 mg l−1) with those experimentally yielded by ocean warming (+4 °C) and acidification (−0.4 units) conditions on the basis of IPCC projections (RCP 8.5) for 2100. In contrast to warming and acidification, hypoxic events elicited consistent negative effects relative to control biological performance—survival (–33%), abundance (–65%), development (–51%), metabolism (–33%), growth (–24%) and reproduction (–39%)—across the taxonomic groups (mollusks, crustaceans and fish), ontogenetic stages and climate regions studied. Our findings call for a refocus of global change experimental studies, integrating oxygen concentration drivers as a key factor of ocean change. Given potential combined effects, multistressor designs including gradual and extreme changes are further warranted to fully disclose the future impacts of ocean oxygen loss, warming and acidification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Average and detailed biological responses of combined marine biota to global change stressors.
Fig. 2: Average and detailed biological responses of the main heterotrophic taxonomic groups to global change stressors.
Fig. 3: Average biological responses across ontogenetic life stages and/or climate regions of the main heterotrophic taxonomic groups to global change stressors.

Data availability

All data relating to this manuscript are available in Supplementary Data files.

Code availability

All code relating to this manuscript are available in Supplementary Data files.

References

  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. 2.

    Laffoley, D. & Baxter, J. M. Ocean Deoxygenation: Everyone’s Problem—Causes, Impacts, Consequences and Solutions (IUCN, 2019).

  3. 3.

    Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Ann. Rev. Mar. Sci. 10, 229–260 (2018).

    PubMed  Google Scholar 

  4. 4.

    Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).

    Google Scholar 

  5. 5.

    Bijma, J., Pörtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wittmann, A. C. & Pörtner, H. O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Change 3, 995–1001 (2013).

    CAS  Google Scholar 

  7. 7.

    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–98 (2007).

    PubMed  Google Scholar 

  8. 8.

    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Frazão Santos, C. et al. Ocean planning in a changing climate. Nat. Geosci. 9, 730 (2016).

    Google Scholar 

  10. 10.

    Frazão Santos, C. et al. Integrating climate change in ocean planning. Nat. Sustain. 3, 505–516 (2020).

    Google Scholar 

  11. 11.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  12. 12.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Google Scholar 

  13. 13.

    Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    PubMed  Google Scholar 

  14. 14.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).

    CAS  Google Scholar 

  16. 16.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

  18. 18.

    Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).

  19. 19.

    Sampaio, E. & Rosa, R. in Climate Action. Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) (Springer, 2019); https://doi.org/10.1007/978-3-319-71063-1_90-1

  20. 20.

    Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).

    Google Scholar 

  21. 21.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Google Scholar 

  23. 23.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  24. 24.

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    PubMed  Google Scholar 

  25. 25.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Google Scholar 

  26. 26.

    Ng, C. A. & Micheli, F. Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera). Sci. Rep. 10, 5403 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    CAS  PubMed  Google Scholar 

  28. 28.

    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).

    CAS  Google Scholar 

  29. 29.

    Diaz, R. et al. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 246–303 (1995).

    Google Scholar 

  30. 30.

    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).

    CAS  Google Scholar 

  31. 31.

    Sampaio, E. et al. Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci. Total Environ. 618, 388–398 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Rosa, R. & Seibel, B. A. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc. Natl Acad. Sci. USA 105, 20776–20780 (2008).

    CAS  PubMed  Google Scholar 

  33. 33.

    Klein, S. G., Steckbauer, A. & Duarte, C. M. Defining CO2 and O2 syndromes of marine biomes in the Anthropocene. Glob. Change Biol. 26, 355–363 (2020).

    Google Scholar 

  34. 34.

    Ferreira, V. et al. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol. Rev. 90, 669–688 (2015).

    PubMed  Google Scholar 

  35. 35.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratio in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  36. 36.

    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).

    Google Scholar 

  38. 38.

    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).

    PubMed  Google Scholar 

  39. 39.

    Schram, J., Schoenrock, K., McClintock, J., Amsler, C. & Angus, R. Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods. Mar. Ecol. Prog. Ser. 554, 81–97 (2016).

    CAS  Google Scholar 

  40. 40.

    Rummer, J. L. et al. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Change Biol. 20, 1055–1066 (2014).

    Google Scholar 

  41. 41.

    Ferrari, M. C. O. et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob. Change Biol. 21, 1848–1855 (2015).

    Google Scholar 

  42. 42.

    Munday, P. L., Crawley, N. E. & Nilsson, G. E. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar. Ecol. Prog. Ser. 388, 235–242 (2009).

    CAS  Google Scholar 

  43. 43.

    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).

    CAS  PubMed  Google Scholar 

  44. 44.

    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920 (2008).

    CAS  PubMed  Google Scholar 

  45. 45.

    Sperling, E. A., Frieder, C. A. & Levin, L. A. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc. R. Soc. B 283, 20160637 (2016).

  46. 46.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).

    Google Scholar 

  47. 47.

    Levin, L. A. & Bris, N. L. The deep ocean under climate change. Science 350, 766–768 (2015).

    CAS  Google Scholar 

  48. 48.

    Steckbauer, A., Klein, S. G. & Duarte, C. M. Additive impacts of deoxygenation and acidification threaten marine biota. Glob. Change Biol. 26, 5602–5612 (2020).

    Google Scholar 

  49. 49.

    Francis Chan, B., Barth, J. A., Kroeker, K. J., Lubchenco, J. & Menge, B. A. The dynamics and impact of ocean acidification and hypoxia. Oceanography 32, 62–71 (2019).

    Google Scholar 

  50. 50.

    Tomasetti, S. J. & Gobler, C. J. Dissolved oxygen and pH criteria leave fisheries at risk. Science 368, 372–373 (2020).

    CAS  PubMed  Google Scholar 

  51. 51.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 6239 (2015).

    Google Scholar 

  52. 52.

    Tripp-Valdez, M. A. et al. Metabolic response and thermal tolerance of green abalone juveniles (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. J. Exp. Mar. Biol. Ecol. 497, 11–18 (2017).

    CAS  Google Scholar 

  53. 53.

    Benton, M. J. & Twitchett, R. J. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358–365 (2003).

    Google Scholar 

  54. 54.

    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eeaat1327 (2018).

  55. 55.

    IPCC Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  56. 56.

    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).

    PubMed  Google Scholar 

  57. 57.

    Boyer, T. P. et al. World Ocean Database 2018 NOAA Atlas NESDIS 87 (ed. Mishonov, A. V.) (NOAA, 2018); https://www.ncei.noaa.gov/products/world-ocean-database

  58. 58.

    Gobler, C. J., DePasquale, E. L., Griffith, A. W. & Baumann, H. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9, e83648 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

  60. 60.

    Basso, L., Hendriks, I., Steckbauer, A. & Duarte, C. Resistance of juveniles of the Mediterranean pen shell (Pinna nobilis) to hypoxia and interaction with warming. Estuar. Coast. Shelf Sci. 165, 199–203 (2015).

    CAS  Google Scholar 

  61. 61.

    Calder-Potts, R., Spicer, J. I., Calosi, P., Findlay, H. S. & Widdicombe, S. A mesocosm study investigating the effects of hypoxia and population density on respiration and reproductive biology in the brittlestar Amphiura filiformis. Mar. Ecol. Prog. Ser. 534, 135–147 (2015).

    CAS  Google Scholar 

  62. 62.

    Cheng, B. S. et al. Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework. Glob. Change Biol. 21, 2488–2499 (2015).

    Google Scholar 

  63. 63.

    Couturier, C. S., Stecyk, J. A. W., Rummer, J. L., Munday, P. L. & Nilsson, G. E. Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comp. Biochem. Physiol. A 166, 482–489 (2013).

    CAS  Google Scholar 

  64. 64.

    Pérez-López, P. et al. Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J. Clean. Prod. 64, 332–344 (2014).

    Google Scholar 

  65. 65.

    Garcia, R. N. et al. Interactive effects of mosquito control insecticide toxicity, hypoxia, and increased carbon dioxide on larval and juvenile Eastern oysters and hard clams. Arch. Environ. Contam. Toxicol. 66, 450–462 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Lefevre, S., Watson, S.-A., Munday, P. L. & Nilsson, G. E. Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus. J. Exp. Biol. 218, 2991–3001 (2015).

    PubMed  Google Scholar 

  67. 67.

    Li, A. & Chiu, J. M. Y. Latent effects of hypoxia on the gastropod Crepidula onyx. Mar. Ecol. Prog. Ser. 480, 145–154 (2013).

    Google Scholar 

  68. 68.

    Rosa, R. et al. Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proc. Biol. Sci. 280, 20131695 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rosa, R., Gonzalez, L., Dierssen, H. M. & Seibel, B. A. Environmental determinants of latitudinal size-trends in cephalopods. Mar. Ecol. Prog. Ser. 464, 153–165 (2012).

    Google Scholar 

  70. 70.

    Styf, H. K., Nilsson Sköld, H. & Eriksson, S. P. Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature. Ecol. Evol. 3, 5055–5065 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Sui, Y., Hu, M., Huang, X., Wang, Y. & Lu, W. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. Mar. Environ. Res. 109, 159–167 (2015).

    CAS  PubMed  Google Scholar 

  72. 72.

    Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).

    Google Scholar 

  73. 73.

    Vasquez, M. C., Murillo, A., Brockmann, H. J. & Julian, D. Multiple-stressor interactions influence embryo development rate in the American horseshoe crab, Limulus polyphemus. J. Exp. Biol. 218, 2355–2364 (2015).

    PubMed  Google Scholar 

  74. 74.

    Donelson, J. M., Munday, P. L., Mccormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719 (2011).

    Google Scholar 

  75. 75.

    Gardiner, N. M., Munday, P. L. & Nilsson, G. E. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PLoS ONE 5, e13299 (2010).

  76. 76.

    DePasquale, E., Baumann, H. & Gobler, C. J. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar. Ecol. Prog. Ser. 523, 145–156 (2015).

    CAS  Google Scholar 

  77. 77.

    Hughes, B. B. et al. Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proc. Natl Acad. Sci. USA 112, 8025–8030 (2015).

    CAS  PubMed  Google Scholar 

  78. 78.

    Lefevre, S., Damsgaard, C., Pascale, D. R., Nilsson, G. E. & Stecyk, J. A. W. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis. J. Exp. Biol. 217, 4387–4398 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lopes, A. R. et al. Oxidative stress in deep scattering layers: heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones. Deep. Res. Part I Oceanogr. Res. Pap. 82, 10–16 (2013).

    CAS  Google Scholar 

  80. 80.

    Maas, A. E., Wishner, K. F. & Seibel, B. A. Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific. Mar. Biol. 159, 1955–1967 (2012).

    CAS  Google Scholar 

  81. 81.

    Penghan, L. Y., Cao, Z. D. & Fu, S. J. Effect of temperature and dissolved oxygen on swimming performance in crucian carp. Aquat. Biol. 21, 57–65 (2014).

    Google Scholar 

  82. 82.

    Sørensen, C., Munday, P. L. & Nilsson, G. E. Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival. Glob. Change Biol. 20, 724–729 (2014).

    Google Scholar 

  83. 83.

    Zittier, Z. M. C., Bock, C., Lannig, G. & Pörtner, H. O. Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis (L.) from the North Sea. J. Exp. Mar. Biol. Ecol. 473, 16–25 (2015).

    CAS  Google Scholar 

  84. 84.

    Zittier, Z. M. C., Hirse, T. & Pörtner, H.-O. The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid–base balance in the spider crab, Hyas araneus. Mar. Biol. 160, 2049–2062 (2013).

    CAS  Google Scholar 

  85. 85.

    Zhang, H., Shin, P. K. S. & Cheung, S. G. Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis. Mar. Environ. Res. 106, 51–60 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Wood, H. L., Spicer, J. I., Kendall, M. A., Lowe, D. M. & Widdicombe, S. Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biol. 34, 1033–1044 (2011).

    Google Scholar 

  87. 87.

    Wolfe, K., Smith, A. M., Trimby, P. & Byrne, M. Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution. Biol. Bull. 223, 236–244 (2012).

    CAS  PubMed  Google Scholar 

  88. 88.

    Walther, K., Sartoris, F. J. & Pörtner, H. O. Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar. Biol. 158, 2043–2053 (2011).

    CAS  Google Scholar 

  89. 89.

    Walther, K., Anger, K. & Pörtner, H. O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Mar. Ecol. Prog. Ser. 417, 159–170 (2010).

    Google Scholar 

  90. 90.

    Vehmaa, A. et al. Projected marine climate change: effects on copepod oxidative status and reproduction. Ecol. Evol. 3, 4548–4557 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Vehmaa, A., Brutemark, A. & Engström-Öst, J. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7, e48538 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8, e82938 (2013).

  93. 93.

    Towle, E. K., Enochs, I. C. & Langdon, C. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS ONE 10, e0123394 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Stubler, A. D., Furman, B. T. & Peterson, B. J. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral. Glob. Change Biol. 21, 4006–4020 (2015).

    Google Scholar 

  95. 95.

    Small, D. P., Calosi, P., Boothroyd, D., Widdicombe, S. & Spicer, J. I. Stage-specific changes in physiological and life-history responses to elevated temperature and Pco2 during the larval development of the European lobster Homarus gammarus (L.). Physiol. Biochem. Zool. 88, 494–507 (2015).

    PubMed  Google Scholar 

  96. 96.

    Mackenzie, C. L., Lynch, S. A., Culloty, S. C. & Malham, S. K. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L. PLoS ONE 9, e0099712 (2014).

  97. 97.

    Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).

    Google Scholar 

  98. 98.

    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS ONE 8, e75049 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Di Santo, V. Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea (Mitchill). J. Exp. Mar. Biol. Ecol. 463, 72–78 (2015).

    Google Scholar 

  100. 100.

    Russell, B. D. et al. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philos. Trans. R. Soc. B 368, 20120438 (2013).

    Google Scholar 

  101. 101.

    Rosa, R. et al. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). J. Exp. Biol. 217, 518–525 (2014).

    PubMed  Google Scholar 

  102. 102.

    Reyes-Nivia, C., Diaz-Pulido, G., Kline, D., Guldberg, O. H. & Dove, S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob. Change Biol. 19, 1919–1929 (2013).

    Google Scholar 

  103. 103.

    Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).

    PubMed  Google Scholar 

  104. 104.

    Poore, A. G. B. et al. Direct and indirect effects of ocean acidification and warming on a marine plant–herbivore interaction. Oecologia 173, 111311–111324 (2013).

    Google Scholar 

  105. 105.

    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Pimentel, M. S. et al. Oxidative stress and digestive enzyme activity of flatfish larvae in a changing ocean. PLoS ONE 10, e0134082 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 217, 2062–2070 (2014).

    PubMed  Google Scholar 

  108. 108.

    Pecorino, D., Barker, M. F., Dworjanyn, S. A., Byrne, M. & Lamare, M. D. Impacts of near future sea surface pH and temperature conditions on fertilisation and embryonic development in Centrostephanus rodgersii from northern New Zealand and northern New South Wales, Australia. Mar. Biol. 161, 101–110 (2014).

    CAS  Google Scholar 

  109. 109.

    Pansch, C., Nasrolahi, A., Appelhans, Y. S. & Wahl, M. Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2. Mar. Biol. 160, 2023–2035 (2013).

    CAS  Google Scholar 

  110. 110.

    Pansch, C., Nasrolahi, A., Appelhans, Y. S. & Wahl, M. Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. J. Exp. Mar. Biol. Ecol. 420–421, 48–55 (2012).

    Google Scholar 

  111. 111.

    Nowicki, J. P., Miller, G. M. & Munday, P. L. Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J. Exp. Mar. Biol. Ecol. 412, 46–51 (2012).

    Google Scholar 

  112. 112.

    Nguyen, H. D., Doo, S. S., Soars, N. A. & Byrne, M. Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Glob. Change Biol. 18, 2466–2476 (2012).

    Google Scholar 

  113. 113.

    Nguyen, H. D. & Byrne, M. Early benthic juvenile Parvulastra exigua (Asteroidea) are tolerant to extreme acidification and warming in its intertidal habitat. J. Exp. Mar. Biol. Ecol. 453, 36–42 (2014).

    CAS  Google Scholar 

  114. 114.

    Agnalt, A. L., Grefsrud, E. S., Farestveit, E., Larsen, M. & Keulder, F. Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures. Biogeosciences 10, 7883–7895 (2013).

    Google Scholar 

  115. 115.

    Alsterberg, C., Eklöf, J. S., Gamfeldt, L., Havenhand, J. N. & Sundbäck, K. Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc. Natl Acad. Sci. USA 110, 8603–8608 (2013).

    CAS  PubMed  Google Scholar 

  116. 116.

    Anlauf, H., D’Croz, L. & O’Dea, A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol. 397, 13–20 (2011).

    Google Scholar 

  117. 117.

    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    CAS  PubMed  Google Scholar 

  118. 118.

    Appelhans, Y. S. et al. Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Mar. Ecol. Prog. Ser. 509, 227–239 (2014).

    CAS  Google Scholar 

  119. 119.

    Arnberg, M. et al. Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae. Mar. Biol. 160, 2037–2048 (2013).

    CAS  Google Scholar 

  120. 120.

    Baragi, L. V. & Anil, A. C. Interactive effect of elevated pCO2 and temperature on the larval development of an inter-tidal organism, Balanus amphitrite Darwin (Cirripedia: Thoracica). J. Exp. Mar. Biol. Ecol. 471, 48–57 (2015).

    CAS  Google Scholar 

  121. 121.

    Baria, M. V. B., Kurihara, H. & Harii, S. Tolerance to elevated temperature and ocean acidification of the larvae of the solitary corals Fungia fungites (Linnaues, 1758) and Lithophyllon repanda (Dana, 1846). Zool. Sci. 32, 447–454 (2015).

    CAS  Google Scholar 

  122. 122.

    Basso, L., Hendriks, I. E. & Duarte, C. M. Juvenile pen shells (Pinna nobilis) tolerate acidification but are vulnerable to warming. Estuaries Coasts 38, 1976–1985 (2015).

    Google Scholar 

  123. 123.

    Biscéré, T. et al. Responses of two scleractinian corals to cobalt pollution and ocean acidification. PLoS ONE 10, e0122898 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Brennand, H. S., Soars, N., Dworjanyn, S. A., Davis, A. R. & Byrne, M. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5, e11372 (2010).

    Google Scholar 

  125. 125.

    Brown, M. B., Edwards, M. S. & Kim, K. Y. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29, 203–215 (2014).

    CAS  Google Scholar 

  126. 126.

    Buerger, P., Schmidt, G. M., Wall, M., Held, C. & Richter, C. Temperature tolerance of the coral Porites lutea exposed to simulated large amplitude internal waves (LAIW). J. Exp. Mar. Biol. Ecol. 471, 232–239 (2015).

    Google Scholar 

  127. 127.

    Burdett, H. L. et al. Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Mar. Biol. 161, 1499–1506 (2014).

    CAS  Google Scholar 

  128. 128.

    Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485, 37–46 (2013).

    CAS  Google Scholar 

  129. 129.

    Bylenga, C. H., Cummings, V. J. & Ryan, K. G. Fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, under reduced pH and elevated temperatures. Mar. Ecol. Prog. Ser. 536, 187–201 (2015).

    Google Scholar 

  130. 130.

    Byrne, M., Soars, N., Selvakumaraswamy, P., Dworjanyn, S. A. & Davis, A. R. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar. Environ. Res. 69, 234–239 (2010).

    CAS  PubMed  Google Scholar 

  131. 131.

    Byrne, M. et al. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc. R. Soc. B 278, 2376–2383 (2011).

    PubMed  Google Scholar 

  132. 132.

    Byrne, M. et al. Ocean warming will mitigate the effects of acidification on calcifying sea urchin larvae (Heliocidaris tuberculata) from the Australian global warming hot spot. J. Exp. Mar. Biol. Ecol. 448, 250–257 (2013).

    CAS  Google Scholar 

  133. 133.

    Byrne, M. et al. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Mar. Ecol. Prog. Ser. 473, 235–246 (2013).

    CAS  Google Scholar 

  134. 134.

    Byrne, M. et al. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin. Environ. Sci. Technol. 48, 12620–12627 (2014).

    CAS  PubMed  Google Scholar 

  135. 135.

    Byrne, M. et al. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Glob. Change Biol. 19, 2264–2275 (2013).

    Google Scholar 

  136. 136.

    Carey, N. & Sigwart, J. D. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change. Biol. Lett. 10, 20140408 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Castillo, K. D., Ries, J. B., Bruno, J. F. & Westfield, I. T. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proc. R. Soc. B 281, 20141856 (2014).

    PubMed  Google Scholar 

  138. 138.

    Christensen, A. B., Nguyen, H. D. & Byrne, M. Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: inferences for survivorship in a changing ocean. J. Exp. Mar. Biol. Ecol. 403, 31–38 (2011).

    Google Scholar 

  139. 139.

    Cohen-Rengifo, M., Garcia, E., Hernandez, C. A., Hernandez, J. C. & Clemente, S. Global warming and ocean acidification affect fertilization and early development of the sea urchin Paracentrotus lividus. Cah. Biol. Mar. 54, 667–675 (2013).

    Google Scholar 

  140. 140.

    Comeau, S., Carpenter, R. C. & Edmunds, P. J. Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. J. Exp. Mar. Biol. Ecol. 453, 28–35 (2014).

    Google Scholar 

  141. 141.

    Courtney, T., Westfield, I. & Ries, J. B. CO2-induced ocean acidification impairs calcification in the tropical urchin Echinometra viridis. J. Exp. Mar. Biol. Ecol. 440, 169–175 (2013).

    CAS  Google Scholar 

  142. 142.

    Davis, A. R. et al. Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8, e55939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl Acad. Sci. USA 110, 15342–15347 (2013).

    CAS  PubMed  Google Scholar 

  144. 144.

    Duarte, C. et al. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J. Sea Res. 85, 308–314 (2014).

    Google Scholar 

  145. 145.

    Eklöf, J. S. et al. Experimental climate change weakens the insurance effect of biodiversity. Ecol. Lett. 15, 864–872 (2012).

    PubMed  Google Scholar 

  146. 146.

    Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar. Biol. 157, 725–735 (2010).

    Google Scholar 

  147. 147.

    Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar. Coast. Shelf Sci. 86, 675–682 (2010).

    CAS  Google Scholar 

  148. 148.

    Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L. & McCulloch, M. T. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34, 1217–1226 (2015).

    Google Scholar 

  149. 149.

    García, E., Clemente, S. & Hernández, J. C. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Mar. Environ. Res. 110, 61–68 (2015).

    PubMed  Google Scholar 

  150. 150.

    García, E., Clemente, S., López, C., McAlister, J. S. & Hernández, J. C. Ocean warming modulates the effects of limited food availability on Paracentrotus lividus larval development. Mar. Biol. 162, 1463–1472 (2015).

    Google Scholar 

  151. 151.

    Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. Ecol. 474, 116–125 (2016).

    Google Scholar 

  152. 152.

    Gianguzza, P. et al. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Mar. Environ. Res. 93, 70–77 (2014).

    CAS  PubMed  Google Scholar 

  153. 153.

    Hardy, N. A. & Byrne, M. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Mar. Environ. Res. 102, 78–87 (2014).

    CAS  PubMed  Google Scholar 

  154. 154.

    Hiebenthal, C., Philipp, E. E. R., Eisenhauer, A. & Wahl, M. Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Mar. Biol. 160, 2073–2087 (2013).

    CAS  Google Scholar 

  155. 155.

    Ho, M. A., Price, C., King, C. K., Virtue, P. & Byrne, M. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Mar. Environ. Res. 90, 136–141 (2013).

    CAS  PubMed  Google Scholar 

  156. 156.

    Iguchi, A., Suzuki, A., Sakai, K. & Nojiri, Y. Comparison of the effects of thermal stress and CO2-driven acidified seawater on fertilization in coral Acropora digitifera. Zygote 23, 631–634 (2015).

    CAS  PubMed  Google Scholar 

  157. 157.

    Inoue, M. et al. Estimate of calcification responses to thermal and freshening stresses based on culture experiments with symbiotic and aposymbiotic primary polyps of a coral, Acropora digitifera. Glob. Planet. Change 92–93, 1–7 (2012).

    Google Scholar 

  158. 158.

    Johansen, J. L. & Jones, G. P. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob. Change Biol. 17, 2971–2979 (2011).

    Google Scholar 

  159. 159.

    Kamya, P. Z. et al. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Glob. Change Biol. 20, 3365–3376 (2014).

    Google Scholar 

  160. 160.

    Kaniewska, P. et al. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7, e34659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Kaniewska, P. et al. Transcriptomic changes in coral holobionts provide insights into physiological challenges of future climate and ocean change. PLoS ONE 10, e0139223 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Kavousi, J., Reimer, J. D., Tanaka, Y. & Nakamura, T. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming. Mar. Environ. Res. 109, 9–20 (2015).

    CAS  PubMed  Google Scholar 

  163. 163.

    Keppel, E. A., Scrosati, R. A. & Courtenay, S. C. Interactive effects of ocean acidification and warming on subtidal mussels and sea stars from Atlantic Canada. Mar. Biol. Res. 11, 337–348 (2015).

    Google Scholar 

  164. 164.

    Kreiss, C. M., Michael, K., Bock, C., Lucassen, M. & Pörtner, H. O. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. A 182, 102–112 (2015).

    CAS  Google Scholar 

  165. 165.

    Lannig, G., Eilers, S., Pörtner, H. O., Sokolova, I. M. & Bock, C. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar. Drugs 8, 2318–2339 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Levas, S. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).

    CAS  Google Scholar 

  167. 167.

    Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).

    PubMed  Google Scholar 

  168. 168.

    Li, S. et al. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci. Rep. 6, 18943 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Lischka, S. & Riebesell, U. Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob. Change Biol. 18, 3517–3528 (2012).

    Google Scholar 

  170. 170.

    Matoo, O. B., Ivanina, A. V., Ullstad, C., Beniash, E. & Sokolova, I. I. Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comp. Biochem. Physiol. A 164, 545–553 (2013).

    CAS  Google Scholar 

  171. 171.

    Mayor, D. J., Everett, N. R. & Cook, K. B. End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J. Plankton Res. 34, 258–262 (2012).

    CAS  Google Scholar 

  172. 172.

    Meadows, A. S., Ingels, J., Widdicombe, S., Hale, R. & Rundle, S. D. Effects of elevated CO2 and temperature on an intertidal meiobenthic community. J. Exp. Mar. Biol. Ecol. 469, 44–56 (2015).

    CAS  Google Scholar 

  173. 173.

    Melatunan, S., Calosi, P., Rundle, S. D., Moody, A. J. & Widdicombe, S. Exposure to elevated temperature and PCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea. Physiol. Biochem. Zool. 84, 583–594 (2011).

    CAS  PubMed  Google Scholar 

  174. 174.

    Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).

    CAS  Google Scholar 

  175. 175.

    Miller, G. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecol. Appl. 25, 603–620 (2015).

    CAS  PubMed  Google Scholar 

  176. 176.

    Engström-Öst, J. & Isaksson, I. Effects of macroalgal exudates and oxygen deficiency on survival and behaviour of fish larvae. J. Exp. Mar. Biol. Ecol. 335, 227–234 (2006).

    Google Scholar 

  177. 177.

    Hagerman, L. & Szaniawska, A. Behaviour, tolerance and anaerobic metabolism under hypoxia in the brackish-water shrimp Crangon crangon. Mar. Ecol. Prog. Ser. 34, 125–132 (1986).

    CAS  Google Scholar 

  178. 178.

    Winn, R. N. & Knott, D. M. An evaluation of the survival of experimental populations exposed to hypoxia in the Savannah River estuary. Mar. Ecol. Prog. Ser. 88, 161–179 (1992).

    Google Scholar 

  179. 179.

    Baker, S. M. & Mann, R. Effects of hypoxia and anoxia on larval settlement, juvenile growth, and juvenile survival of the oyster Crassostrea virginica. Biol. Bull. 182, 265–269 (1992).

    CAS  PubMed  Google Scholar 

  180. 180.

    Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302–306 (2008).

    CAS  PubMed  Google Scholar 

  181. 181.

    Marcus, N. H., Richmond, C., Sedlacek, C., Miller, G. A. & Oppert, C. Impact of hypoxia on the survival, egg production and population dynamics of Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 301, 111–128 (2004).

    Google Scholar 

  182. 182.

    Shang, E. H. H. & Wu, R. S. S. Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol. 38, 4763–4767 (2004).

    CAS  PubMed  Google Scholar 

  183. 183.

    Mugnier, C., Zippera, E., Goaranta, C. & Lemonnier, H. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. Aquaculture 274, 398–407 (2008).

    CAS  Google Scholar 

  184. 184.

    Sedlacek, C. & Marcus, N. H. Egg production of the copepod Acartia tonsa: the influence of hypoxia and food concentration. J. Exp. Mar. Biol. Ecol. 318, 183–190 (2005).

    Google Scholar 

  185. 185.

    Stalder, L. C. & Marcus, N. H. Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods. Mar. Biol. 127, 599–607 (1997).

    Google Scholar 

  186. 186.

    de Zwaan, A., Cortesi, P., van den Thillart, G., Roos, J. & Storey, K. B. Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis. Mar. Biol. 111, 343–351 (1991).

    Google Scholar 

  187. 187.

    Cooper, R. U., Clough, L. M., Farwell, M. A. & West, T. L. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J. Exp. Mar. Biol. Ecol. 279, 1–20 (2002).

    CAS  Google Scholar 

  188. 188.

    Secor, D. H. & Gunderson, T. E. Effects of hypoxia and temperature on survival, growth and respiration of juvenile Atlantic sturgeon, Acipencer oxyrinchus. Fish. Bull. 96, 603–613 (1998).

    Google Scholar 

  189. 189.

    Wu, R. S. S., Zhou, B. S., Randall, D. J., Woo, N. Y. S. & Lam, P. K. S. Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environ. Sci. Technol. 37, 1137–1141 (2003).

    CAS  PubMed  Google Scholar 

  190. 190.

    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  192. 192.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  193. 193.

    Viechtbauer, W. Meta-Analysis Package for R: Package ‘metafor’ version 2.4-0 (2019).

  194. 194.

    Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003).

    PubMed  Google Scholar 

  195. 195.

    Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia (FCT), through the strategic project granted to MARE strategic project (UID/MAR/04292/2019), the PhD grants attributed to E.S. (SFRH/BD/131771/2017), C.S. (SRFH/SFRH/BD/117890/2016) and V.F. (CEECIND/02484/2018), financed by national and community funds from FCT and the European Social Fund (ESF), through the Human Capital Operating Programme and Regional Operation Programme (Lisboa 2020). Furthermore, we acknowledge the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984), L.A.L. was supported by NSF OCE1829623 and NOAA CHRP award NA18NOS4780172, and H.-O.P. was supported by PACES programme of the AWI and the DFG (German Research Council Po 278 16-1 and -2) Research group Tersane.

Author information

Affiliations

Authors

Contributions

E.S., I.C.R. and R.R. conceptualized the study. E.S., I.C.R. and C.S. collected the data. E.S. and V.F. performed the statistical analyses. I.C.R. and C.S. designed the figures. H.-O.P., C.M.D. and L.A.L. supervised work preparation. E.S., I.C.R., C.S., V.F., H.-O.P., C.M.D., L.A.L. and R.R. interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Eduardo Sampaio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Christopher Gobler, Jonathan Lefcheck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Tables

Supplementary tables with statistical outcomes for all tests.

Supplementary Data 1

Full dataset.

Supplementary Data 2

Curated dataset.

Supplementary Data 3

Code used for meta-analyses.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sampaio, E., Santos, C., Rosa, I.C. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat Ecol Evol 5, 311–321 (2021). https://doi.org/10.1038/s41559-020-01370-3

Download citation

Search

Quick links