Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mobilizing the past to shape a better Anthropocene

Abstract

As our planet emerges into a new epoch in which humans dominate the Earth system, it is imperative that societies initiate a new phase of responsible environmental stewardship. Here we argue that information from the past has a valuable role to play in enhancing the sustainability and resilience of our societies. We highlight the ways that past data can be mobilized for a variety of efforts, from supporting conservation to increasing agricultural sustainability and food security. At a practical level, solutions from the past often do not require fossil fuels, can be locally run and managed, and have been tested over the long term. Past failures reveal non-viable solutions and expose vulnerabilities. To more effectively leverage increasing knowledge about the past, we advocate greater cross-disciplinary collaboration, systematic engagement with stakeholders and policymakers, and approaches that bring together the best of the past with the cutting-edge technologies and solutions of tomorrow.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A summary of key ways that historical data can enhance the resilience of societies today and into the future.

Michelle O’Reilly, Max Planck Institute for the Science of Human History.

Fig. 2: Application of past practices and solutions to modern-day challenges.

Michelle O’Reilly, Max Planck Institute for the Science of Human History.

Fig. 3: Using past data to create modern baselines.
Fig. 4: Summary of key deliverables the past offers in addressing the challenges of the Anthropocene.

Michelle O’Reilly, Max Planck Institute for the Science of Human History.

References

  1. 1.

    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).

    CAS  PubMed  Google Scholar 

  3. 3.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  Google Scholar 

  4. 4.

    Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).

    CAS  PubMed  Google Scholar 

  5. 5.

    Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).

    Google Scholar 

  7. 7.

    Braje, T. J. Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J. Archaeol. Res. 23, 369–396 (2015).

    Google Scholar 

  8. 8.

    Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the age of humans. Proc. Natl Acad. Sci. USA 117, 8250–8253 (2020).

    CAS  PubMed  Google Scholar 

  9. 9.

    Sabloff, J. A. Archaeology Matters: Action Archaeology in the Modern World (Routledge, 2008).

  10. 10.

    Guttmann-Bond, E. Sustainability out of the past: how archaeology can save the planet. World Archaeol. 42, 355–366 (2010).

    Google Scholar 

  11. 11.

    Reed, K. & Ryan, P. Lessons from the past and the future of food. World Archaeol. 51, 1–16 (2019).

    Google Scholar 

  12. 12.

    Isendahl, C. & Stump, D. (eds) The Oxford Handbook of Historical Ecology and Applied Archaeology (Oxford Univ. Press, 2019).

  13. 13.

    Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2019).

    Google Scholar 

  14. 14.

    Wolverton, S. & Lyman, R. L. (eds) Conservation Biology and Applied Zooarchaeology (Univ. Arizona Press, 2012).

  15. 15.

    Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Google Scholar 

  16. 16.

    Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007).

    Google Scholar 

  17. 17.

    Steffen, W., Grinevald, J., Crutzen, P. J. & McNeill, J. R. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369, 842–867 (2011).

    Google Scholar 

  18. 18.

    Ellis, E., Maslin, M., Boivin, N. & Bauer, A. A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).

    Google Scholar 

  19. 19.

    Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).

    Google Scholar 

  20. 20.

    Lewis, S. L. & Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  Google Scholar 

  25. 25.

    Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).

    Google Scholar 

  26. 26.

    Haines-Young, R. & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  27. 27.

    Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).

    Google Scholar 

  28. 28.

    Willis, K. J. & Birks, H. J. B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265 (2006).

    CAS  PubMed  Google Scholar 

  29. 29.

    Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).

    PubMed  Google Scholar 

  30. 30.

    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).

    PubMed  Google Scholar 

  31. 31.

    Scharf, E. A. Deep time: the emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).

    Google Scholar 

  32. 32.

    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).

    CAS  Google Scholar 

  33. 33.

    Whitlock, C., Colombaroli, D., Conedera, M. & Tinner, W. Land‐use history as a guide for forest conservation and management. Conserv. Biol. 32, 84–97 (2018).

    PubMed  Google Scholar 

  34. 34.

    Frazier, J. Sustainable use of wildlife: the view from archaeozoology. Nat. Conserv. 15, 163–173 (2007).

    Google Scholar 

  35. 35.

    Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).

    PubMed  Google Scholar 

  36. 36.

    Braje, T. & Rick, T. C. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology. Evol. Anthropol. 22, 303–311 (2013).

    PubMed  Google Scholar 

  37. 37.

    Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).

    PubMed  Google Scholar 

  38. 38.

    Barak, R. S. et al. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177, 90–102 (2016).

    Google Scholar 

  39. 39.

    Lambrides, A. B. & Weisler, M. I. Pacific Islands ichthyoarchaeology: implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 24, 275–324 (2016).

    Google Scholar 

  40. 40.

    Foster, T., Olsen, L., Dale, V. & Cohen, A. Studying the past for the future: managing modern biodiversity from historic and prehistoric data. Hum. Organ. 69, 149–157 (2010).

    Google Scholar 

  41. 41.

    Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).

    PubMed  Google Scholar 

  42. 42.

    Nogué, S. et al. Island biodiversity conservation needs palaeoecology. Nat. Ecol. Evol. 1, 0181 (2017).

    Google Scholar 

  43. 43.

    Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    CAS  PubMed  Google Scholar 

  44. 44.

    Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 104, 9709–9714 (2007).

    CAS  PubMed  Google Scholar 

  45. 45.

    Szpak, P., Orchard, T., McKechnie, I. & Gröcke, D. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).

    Google Scholar 

  46. 46.

    McCune, J. L., Pellatt, M. G. & Vellend, M. Multidisciplinary synthesis of long-term human–ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166, 293–300 (2013).

    Google Scholar 

  47. 47.

    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    CAS  PubMed  Google Scholar 

  48. 48.

    Corlett, R. T. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–21 (2013).

    Google Scholar 

  49. 49.

    Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 26, 65–115 (2018).

    Google Scholar 

  50. 50.

    Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30, 540–549 (2015).

    PubMed  Google Scholar 

  52. 52.

    Waters, J. M. & Grosser, S. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38, 1177–1184 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Valentine, K. et al. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conserv. Genet. 9, 933–938 (2008).

    Google Scholar 

  54. 54.

    Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Proc. Natl Acad. Sci. USA 107, 9246–9251 (2010).

    CAS  PubMed  Google Scholar 

  55. 55.

    Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 36249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS  PubMed  Google Scholar 

  57. 57.

    Brewington, S. et al. Islands of change vs. islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. Holocene 25, 1676–1684 (2015).

    Google Scholar 

  58. 58.

    Hicks, M. et al. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) Ch. 12 (Oxford Univ. Press, 2019).

  59. 59.

    Grayson, D. K. & Delpech, F. Pleistocene reindeer and global warming. Conserv. Biol. 19, 557–562 (2005).

    Google Scholar 

  60. 60.

    Enghoff, I. B., MacKenzie, B. R. & Nielson, E. E. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes? Fish. Res. 87, 167–180 (2007).

    Google Scholar 

  61. 61.

    Tengberg, A. et al. Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. Ecosyst. Serv. 2, 14–26 (2012).

    Google Scholar 

  62. 62.

    Walter, R. K. & Hamilton, R. J. A cultural landscape approach to community-based conservation in Solomon Islands. Ecol. Soc. 19, 41 (2014).

    Google Scholar 

  63. 63.

    Ekblom, A., Shoemaker, A., Gillson, L., Lane, P. & Lindholm, K. J. Conservation through biocultural heritage—examples from sub-Saharan Africa. Land 8, 5 (2019).

    Google Scholar 

  64. 64.

    Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).

    CAS  PubMed  Google Scholar 

  65. 65.

    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS  PubMed  Google Scholar 

  66. 66.

    Bowman, D. M. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. Lond. B 371, 20150169 (2016).

    Google Scholar 

  67. 67.

    Kelly, L. T. & Brotons, L. Using fire to promote biodiversity. Science 355, 1264–1265 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Gillson, L., Whitlock, C. & Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 24, 14 (2019).

    Google Scholar 

  70. 70.

    Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).

    CAS  PubMed  Google Scholar 

  71. 71.

    Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).

    Google Scholar 

  72. 72.

    Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).

    Google Scholar 

  73. 73.

    Black, B. A., Ruffner, C. M. & Abrams, M. D. Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res. 36, 1266–1275 (2006).

    Google Scholar 

  74. 74.

    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).

    CAS  Google Scholar 

  75. 75.

    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Env. Res. 38, 57–80 (2013).

    Google Scholar 

  76. 76.

    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Front. Ecol. Evol. 6, 111 (2018).

    Google Scholar 

  78. 78.

    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).

    Google Scholar 

  80. 80.

    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Env. 11, e55–e63 (2013).

    Google Scholar 

  81. 81.

    Archibald, S. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. Lond. B 371, 20150346 (2016).

    Google Scholar 

  82. 82.

    Roos, C. I. et al. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philos. Trans. R. Soc. Lond. B 371, 20150469 (2016).

    Google Scholar 

  83. 83.

    North, M. P. et al. Reform forest fire management. Science 349, 1280–1281 (2015).

    CAS  PubMed  Google Scholar 

  84. 84.

    Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 23, 712–722 (2015).

    Google Scholar 

  85. 85.

    Edwards, A., Russell-Smith, J. & Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 24, 857–870 (2015).

    Google Scholar 

  86. 86.

    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).

    PubMed  Google Scholar 

  87. 87.

    Whitehead, P. J., Bowman, D. M., Preece, N., Fraser, F. & Cooke, P. Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management. Int. J. Wildland Fire 12, 415–425 (2003).

    Google Scholar 

  88. 88.

    Mitchell, R. J. et al. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 327, 316–326 (2014).

    Google Scholar 

  89. 89.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107, 19167–19170 (2010).

    CAS  PubMed  Google Scholar 

  90. 90.

    Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed savanna burning: emerging contributions of indigenous people in northern Australia. Public Admin. Dev. 28, 374–385 (2008).

    Google Scholar 

  91. 91.

    Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Lond. B 371, 20150174 (2016).

    Google Scholar 

  92. 92.

    Gillson, L. & Willis, K. J. ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol. Lett. 7, 990–998 (2004).

    Google Scholar 

  93. 93.

    Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. BioScience 36, 368–373 (1986).

    Google Scholar 

  94. 94.

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    CAS  PubMed  Google Scholar 

  95. 95.

    Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).

    CAS  PubMed  Google Scholar 

  96. 96.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  PubMed  Google Scholar 

  97. 97.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Google Scholar 

  98. 98.

    Renard, D. et al. Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012).

    Google Scholar 

  99. 99.

    Kunen, J. L. Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. J. Field. Archaeol. 28, 325–346 (2001).

    Google Scholar 

  100. 100.

    Erickson, C. L. in Managing Change: Sustainable Approaches to the Conservation of the Built Environment (eds Erickson, C. L. et al.) 181–204 (Getty Conservation Institute, 2003).

  101. 101.

    Sandor, J. A. & Eash, N. S. Significance of ancient agricultural soils for long‐term agronomic studies and sustainable agriculture research. Agron. J. 83, 29–37 (1991).

    Google Scholar 

  102. 102.

    Marston, J. M. Modeling resilience and sustainability in ancient agricultural systems. J. Ethnobiol. 35, 585–605 (2015).

    Google Scholar 

  103. 103.

    Logan, A. L., Stump, D., Goldstein, S. T., Orijemie, E. A. & Schoeman, M. H. Usable pasts forum: critically engaging food security. Afr. Archaeol. Rev. 36, 419–438 (2019).

    Google Scholar 

  104. 104.

    Stump, D. “Ancient and backward or long-lived and sustainable?” The role of the past in debates concerning rural livelihoods and resource conservation in eastern Africa. World Dev. 38, 1251–1122 (2010).

    Google Scholar 

  105. 105.

    Spriggs, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 395–411 (Oxford Univ. Press, 2019).

  106. 106.

    Herath, S., Mishra, B., Wong, P. & Weerakoon, S. B. in Resilient Asia: Fusion of Traditional and Modern Systems for a Sustainable Future (eds Takeuchi, K. et al.) 151–187 (Springer, 2018).

  107. 107.

    Lang, C. & Stump, D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quat. Res. 88, 382–399 (2017).

    Google Scholar 

  108. 108.

    Abeywardana, N., Schütt, B., Wagalawatta, T. & Bebermeier, W. Indigenous agricultural systems in the Dry Zone of Sri Lanka: management transformation assessment and sustainability. Sustainability 11, 910 (2019).

    Google Scholar 

  109. 109.

    Kendall, A. & Drew, D. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 423–440 (Oxford Univ. Press, 2019).

  110. 110.

    Erickson, C. L. & Candler, K. L. in Fragile Lands of Latin America: Strategies For Sustainable Development (ed. Browder, J. O.) 230–248 (Westview Press, 1989).

  111. 111.

    Erickson, C. L. Raised field agriculture in the Lake Titicaca Basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).

    Google Scholar 

  112. 112.

    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).

    CAS  PubMed  Google Scholar 

  113. 113.

    Lombardo, U., Canal-Beeby, E., Fehr, S. & Veit, H. Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J. Archaeol. Sci. 38, 502–512 (2011).

    Google Scholar 

  114. 114.

    Kurashima, N., Fortini, L. & Ticktin, T. The potential of indigenous agricultural food production under climate change in Hawaiʻi. Nat. Sustain. 2, 191–199 (2019).

    Google Scholar 

  115. 115.

    Marshall, K. et al. Restoring people and productivity to Puanui: challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 22, 23 (2017).

    Google Scholar 

  116. 116.

    Lincoln, N. K. et al. Restoration of ‘Āina Malo’o on Hawai’i Island: expanding biocultural relationships. Sustainability 10, 3985 (2018).

    Google Scholar 

  117. 117.

    Atlas, W. I. et al. Ancient fish weir technology for modern stewardship: lessons from community-based salmon monitoring. Ecosyst. Health Sustain. 3, 1341284 (2017).

    Google Scholar 

  118. 118.

    Rodrigues, L., Lombardo, U., Beeby, E. C. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).

    Google Scholar 

  119. 119.

    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    CAS  PubMed  Google Scholar 

  120. 120.

    Herrera, A. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 459–479 (Oxford Univ. Press, 2019).

  121. 121.

    Barthel, S. & Isendahl, C. Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2013).

    Google Scholar 

  122. 122.

    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia: combating the erosion of diversity in landscapes of food production. Ecol. Soc. 18, 71 (2013).

    Google Scholar 

  123. 123.

    Maezumi, S. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23, 1142–1152 (2013).

    Google Scholar 

  125. 125.

    Poschlod, P. & Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 211, 60–68 (2017).

    Google Scholar 

  126. 126.

    Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. The impact of genetic changes during crop domestication. Agronomy 8, 119 (2018).

    Google Scholar 

  127. 127.

    Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).

    CAS  PubMed  Google Scholar 

  128. 128.

    Cheng, A. Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 269, 136–142 (2018).

    CAS  PubMed  Google Scholar 

  129. 129.

    Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 17092 (2017).

    PubMed  Google Scholar 

  130. 130.

    Logan, A. L. “Why Can’t People Feed Themselves?”: archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118, 508–524 (2016).

    Google Scholar 

  131. 131.

    Mueller, N. G., White, A. & Szilagyi, P. Experimental cultivation of eastern North America’s lost crops: insights into agricultural practice and yield potential. J. Ethnobiol. 39, 549–566 (2019).

    Google Scholar 

  132. 132.

    Palmer, S. A., Smith, O. & Allaby, R. G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).

    CAS  PubMed  Google Scholar 

  133. 133.

    Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).

    PubMed  Google Scholar 

  134. 134.

    McNeill, J. R. & Winiwarter, V. Breaking the sod: humankind, history, and soil. Science 304, 1627–1629 (2004).

    CAS  PubMed  Google Scholar 

  135. 135.

    Brown, A. G. & Walsh, K. Societal stability and environmental change: examining the archaeology‐soil erosion paradox. Geoarchaeology 32, 23–35 (2017).

    Google Scholar 

  136. 136.

    Sandor, J. A. & Homburg, J. A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 37, 196–217 (2017).

    Google Scholar 

  137. 137.

    Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001).

    CAS  PubMed  Google Scholar 

  138. 138.

    Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I. (eds) Amazonian Dark Earths: Origin, Properties, Management (Springer, 2007).

  139. 139.

    Blume, H. P. & Leinweber, P. Plaggen soils: landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 16, 319–327 (2004).

    Google Scholar 

  140. 140.

    Davidson, D. A., Dercon, G., Stewart, M. & Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 33, 778–783 (2006).

    Google Scholar 

  141. 141.

    Sandor, J. A. & Eash, N. S. Ancient agricultural soils in the Andes of southern Peru. Soil Sci. Soc. Am. J. 59, 170–179 (1995).

    CAS  Google Scholar 

  142. 142.

    Fairhead, J. & Leach, M. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 265–278 (Springer, 2009).

  143. 143.

    McFadgen, B. G. Maori plaggen soils in New Zealand, their origin and properties. J. R. Soc. N. Z. 10, 3–18 (1980).

    Google Scholar 

  144. 144.

    Calvelo Pereira, R. et al. Detailed carbon chemistry in charcoals from pre‐European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. Eur. J. Soil Sci. 65, 83–95 (2014).

    CAS  Google Scholar 

  145. 145.

    Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 140, 137–147 (2011).

    Google Scholar 

  146. 146.

    Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172, 104–112 (2019).

    CAS  Google Scholar 

  147. 147.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    PubMed  Google Scholar 

  148. 148.

    Bezerra, J., Turnhout, E., Rittl, T. F., Arts, B. & Kuyper, T. W. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ. Policy Plan. 21, 623–635 (2019).

    Google Scholar 

  149. 149.

    Novotny, E. H. et al. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009).

    CAS  Google Scholar 

  150. 150.

    Lehmann, J. & Joseph, S. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 1–14 (Routledge, 2015).

  151. 151.

    Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J. & Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39, 684–690 (2007).

    CAS  Google Scholar 

  152. 152.

    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).

    CAS  Google Scholar 

  153. 153.

    Jorio, A. et al. Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res. 122, 61–66 (2012).

    Google Scholar 

  154. 154.

    More, A. F. et al. Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. GeoHealth 1, 211–219 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Factura, H. et al. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation – integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 61, 2673–2679 (2010).

    CAS  PubMed  Google Scholar 

  156. 156.

    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).

    CAS  Google Scholar 

  157. 157.

    Fedick, S. L. & Morrison, B. A. Ancient use and manipulation of landscape in the Yalahau region of the northern Maya lowlands. Agric. Hum. Values 21, 207–219 (2004).

    Google Scholar 

  158. 158.

    Sedov, S. et al. Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Mem. A 112, 115–126 (2007).

    Google Scholar 

  159. 159.

    Acksel, A., Kapenberg, A., Kühn, P. & Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Region. 10, 93–101 (2017).

    Google Scholar 

  160. 160.

    Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).

    CAS  PubMed  Google Scholar 

  161. 161.

    Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).

    Google Scholar 

  162. 162.

    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).

    CAS  PubMed  Google Scholar 

  163. 163.

    Beach, T., Luzzadder-Beach, S., Dunning, N., Hageman, J. & Lohse, J. Upland agriculture in the Maya Lowlands: ancient Maya soil conservation in northwestern Belize. Geogr. Rev. 92, 372–397 (2002).

    Google Scholar 

  164. 164.

    Akimoto, H. Global air quality and pollution. Science 302, 1716–1719 (2003).

    CAS  PubMed  Google Scholar 

  165. 165.

    Hong, S., Candelone, J. P., Patterson, C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996).

    CAS  Google Scholar 

  166. 166.

    Hong, S., Candelone, J. P., Patterson, C. C. & Boutron, C. F. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843 (1994).

    CAS  PubMed  Google Scholar 

  167. 167.

    Shotyk, W. et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–1640 (1998).

    CAS  PubMed  Google Scholar 

  168. 168.

    Borsos, E., Makra, L., Béczi, R., Vitányi, B. & Szentpéteri, M. Anthropogenic air pollution in the ancient times. Acta Climatol. Chorolog. 36–37, 5–15 (2003).

    Google Scholar 

  169. 169.

    Pyatt, F. B. & Grattan, J. P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 23, 235–236 (2001).

    CAS  Google Scholar 

  170. 170.

    Pyatt, F. B., Pyatt, A. J., Walker, C., Sheen, T. & Grattan, J. P. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicol. Environ. Saf. 60, 295–300 (2005).

    CAS  PubMed  Google Scholar 

  171. 171.

    Longman, J., Veres, D., Finsinger, W. & Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl Acad. Sci. USA 115, E5661–E5668 (2018).

    PubMed  Google Scholar 

  172. 172.

    Renberg, I. et al. Environmental history: a piece in the puzzle for establishing plans for environmental management. J. Environ. Manag. 90, 2794–2800 (2009).

    CAS  Google Scholar 

  173. 173.

    Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L. & Davidson, T. A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J. Paleolimnol. 45, 533–544 (2011).

    Google Scholar 

  174. 174.

    Bindler, R., Rydberg, J. & Renberg, I. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J. Paleolimnol. 45, 519–531 (2011).

    Google Scholar 

  175. 175.

    Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).

    Google Scholar 

  176. 176.

    Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).

    Google Scholar 

  177. 177.

    Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).

    CAS  Google Scholar 

  178. 178.

    Pyatt, F. B. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol. Environ. Saf. 50, 60–64 (2001).

    CAS  PubMed  Google Scholar 

  179. 179.

    Pyatt, F. B., Gilmore, G., Grattan, J. P., Hunt, C. O. & McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. J. Archaeol. Sci. 27, 771–778 (2000).

    Google Scholar 

  180. 180.

    Bindler, R., Renberg, I. & Klaminder, J. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 40, 755–770 (2008).

    Google Scholar 

  181. 181.

    Farmer, J. G. et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci. Total Environ. 407, 5578–5588 (2009).

    CAS  PubMed  Google Scholar 

  182. 182.

    Knabb, K. A. et al. Environmental impacts of ancient copper mining and metallurgy: multi-proxy investigation of human-landscape dynamics in the Faynan valley, southern Jordan. J. Archaeol. Sci. 74, 85–101 (2016).

    CAS  Google Scholar 

  183. 183.

    Grattan, J. P., Gilbertson, D. D. & Hunt, C. O. The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J. Archaeol. Sci. 34, 83–110 (2007).

    Google Scholar 

  184. 184.

    Wilson, B. & Pyatt, F. B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 78, 390–394 (2007).

    CAS  PubMed  Google Scholar 

  185. 185.

    Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95 (2009).

    Google Scholar 

  186. 186.

    Simon, D. & Adam-Bradford, A. in Balanced Urban Development: Options and Strategies for Liveable Cities (eds Maheshwari, B. et al.) 57–83 (Springer, 2016).

  187. 187.

    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).

    Google Scholar 

  188. 188.

    Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).

    Google Scholar 

  189. 189.

    Fletcher, R. in The Comparative Archaeology of Complex Societies (ed. Smith, M. E.) 285–320 (Cambridge Univ. Press, 2011).

  190. 190.

    Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

    CAS  PubMed  Google Scholar 

  191. 191.

    Barthel, S. et al. Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the Earth System. Anthropocene Rev. 6, 71–97 (2019).

    Google Scholar 

  192. 192.

    Wilkinson, A. The Garden in Ancient Egypt (Rubicon Press, 1998).

  193. 193.

    Edmondson, J. L. et al. The hidden potental of urban horticulture. Nat. Food 1, 155–159 (2020).

    Google Scholar 

  194. 194.

    Scarborough, V. L. et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl Acad. Sci. USA 109, 12408–12413 (2012).

    CAS  PubMed  Google Scholar 

  195. 195.

    Angelakis, A. N. & Spyridakis, S. V. Major urban water and wastewater systems in Minoan Crete, Greece. Water Sci. Technol. Water Supply 13, 564–573 (2013).

    Google Scholar 

  196. 196.

    Mays, L., Antoniou, G. P. & Angelakis, A. N. History of water cisterns: legacies and lesson. Water 5, 1916–1940 (2013).

    Google Scholar 

  197. 197.

    French, K. D. & Duffy, C. J. Understanding ancient Maya water resources and the implications for a more sustainable future. Wiley Interdiscip. Rev. Water 1, 305–313 (2014).

    Google Scholar 

  198. 198.

    Chase, A. S. Beyond elite control: residential reservoirs at Caracol, Belize. Wiley Interdiscip. Rev. Water 3, 885–897 (2016).

    Google Scholar 

  199. 199.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    CAS  PubMed  Google Scholar 

  200. 200.

    Van de Noort, R. Conceptualising climate change archaeology. Antiquity 85, 1039–1048 (2011).

    Google Scholar 

  201. 201.

    Hudson, M. J., Aoyama, M., Hoover, K. C. & Uchiyama, J. Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313–328 (2012).

    Google Scholar 

  202. 202.

    Sandweiss, D. H. & Kelley, A. R. Archaeological contributions to climate change research: the archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371–391 (2012).

    Google Scholar 

  203. 203.

    Rockman, M. & Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl Acad. Sci. USA 117, 8295–8302 (2020).

    CAS  PubMed  Google Scholar 

  204. 204.

    Douglass, K. & Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl Acad. Sci. USA 117, 8254–8262 (2020).

    CAS  PubMed  Google Scholar 

  205. 205.

    Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).

    CAS  PubMed  Google Scholar 

  206. 206.

    Mitchell, P. Practising archaeology at a time of climatic catastrophe. Antiquity 82, 1093–1103 (2008).

    Google Scholar 

  207. 207.

    Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).

    CAS  PubMed  Google Scholar 

  208. 208.

    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).

    CAS  PubMed  Google Scholar 

  209. 209.

    Weninger, B. et al. The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Doc. Praehistorica 36, 7–59 (2009).

    Google Scholar 

  210. 210.

    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).

    CAS  PubMed  Google Scholar 

  211. 211.

    Anderson, D. G., Maasch, K. A., Sandweiss, D. H. & Mayewski, P. A. in Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions (eds Anderson, D. G. et al.) 1–23 (Academic Press, 2007).

  212. 212.

    Kintigh, K. W. & Ingram, S. E. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. J. Archaeol. Sci. 89, 25–31 (2018).

    Google Scholar 

  213. 213.

    Amand, F. S. et al. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl Acad. Sci. USA 117, 8287–8294 (2020).

    Google Scholar 

  214. 214.

    Jones, T. L. et al. Environmental imperatives reconsidered: demographic crises in western North America during the Medieval climatic anomaly. Curr. Anthropol. 40, 137–170 (1999).

    CAS  PubMed  Google Scholar 

  215. 215.

    Mann, M. E. in Encyclopedia of Global Environmental Change (ed. MacCracken, M. C.) 504–509 (John Wiley & Sons, Ltd, 2002).

  216. 216.

    Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. Evidence of resilience to past climate change in Southwest Asia: early farming communities and the 9.2 and 8.2 ka events. Quat. Sci. Rev. 136, 23–39 (2016).

    Google Scholar 

  217. 217.

    Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    CAS  PubMed  Google Scholar 

  218. 218.

    Roscoe, P. A changing climate for anthropological and archaeological research? Improving the climate‐change models. Am. Anthropol. 116, 535–548 (2014).

    Google Scholar 

  219. 219.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    PubMed  Google Scholar 

  220. 220.

    Petraglia, M. D., Groucutt, H., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl Acad. Sci. USA 117, 8263–8270 (2020).

    CAS  PubMed  Google Scholar 

  221. 221.

    Manuel, M., Lightfoot, D. & Fattahi, M. The sustainability of ancient water control techniques in Iran: an overview. Water Hist. 10, 13–30 (2018).

    Google Scholar 

  222. 222.

    Avriel-Avni, N., Avni, Y., Babad, A. & Meroz, A. Wisdom dwells in places: what can modern farmers learn from ancient agricultural systems in the desert of the Southern Levant? J. Arid Environ. 163, 86–98 (2019).

    Google Scholar 

  223. 223.

    Lasaponara, R., Rojas, J. L. & Masini, N. in The Ancient Nasca World (eds Lasaponara, R. et al.) 279–327 (Springer, 2016).

  224. 224.

    Bebermeier, W., Meister, J., Withanachchi, C. R., Middelhaufe, I. & Schütt, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 9, 231 (2017).

    Google Scholar 

  225. 225.

    Altschul, J. H. et al. Opinion: Fostering synthesis in archaeology to advance science and benefit society. Proc. Natl Acad. Sci. USA 114, 10999–11002 (2017).

    CAS  PubMed  Google Scholar 

  226. 226.

    Tainter, J. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).

  227. 227.

    Redman, C. L. Human Impact on Ancient Environments (Univ. Arizona, 1999).

  228. 228.

    Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).

    Google Scholar 

  229. 229.

    Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).

    CAS  PubMed  Google Scholar 

  230. 230.

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    Google Scholar 

  231. 231.

    Lane, P. Archaeology in the age of the Anthropocene: a critical assessment of its scope and societal contributions. J. Field Archaeol. 40, 485–498 (2015).

    Google Scholar 

  232. 232.

    Catlin, K. A. Archaeology for the Anthropocene: scale, soil, and the settlement of Iceland. Anthropocene 15, 13–21 (2016).

    Google Scholar 

  233. 233.

    Kintigh, K. W. et al. Grand challenges for archaeology. Proc. Natl Acad. Sci. USA 111, 879–880 (2014).

    CAS  PubMed  Google Scholar 

  234. 234.

    Smith, M. E. Sprawl, squatters and sustainable cities: can archaeological data shed light on modern urban issues? Camb. Archaeol. J. 20, 229–253 (2010).

    Google Scholar 

  235. 235.

    Dave, R. Archaeology must open up to become more diverse. The Guardian (23 May 2016); https://go.nature.com/36mbRRl

  236. 236.

    White, W. & Draycott, C. Why the whiteness of archaeology is a problem. Sapiens (7 July 2020); https://go.nature.com/3lhgS3T

  237. 237.

    Smith, C. & Wobst, H. M. Indigenous Archaeologies: Decolonising Theory and Practice (Routledge, 2004).

  238. 238.

    Hamilakis, Y. Decolonial archaeology as social justice. Antiquity 92, 518–520 (2018).

    Google Scholar 

  239. 239.

    Mustaphi, C. J. C. et al. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228 (2019).

    Google Scholar 

  240. 240.

    Widgren, M. in Rethinking Environmental History World-System History and Global Environmental Change (eds Hornberg, A. et al.) 61–77 (Rowman Altamira, 2007).

  241. 241.

    Matthews, D. German humanities scholars’ unusual role. Inside Higher Ed (24 April 2020); https://go.nature.com/3nbVCNi

  242. 242.

    Agnoletti, M. (ed.) The Conservation of Cultural Landscapes (CABI, 2006).

  243. 243.

    Lowenthal, D. The Past is a Foreign Country – Revisited (Cambridge Univ. Press, 2015).

Download references

Acknowledgements

We thank M. O’Reilly for figure production. N.B. is supported by the Max Planck Society.

Author information

Affiliations

Authors

Contributions

N.B. and A.C. conceived and wrote the paper.

Corresponding author

Correspondence to Nicole Boivin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Torben Rick, Sandra Nogue, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boivin, N., Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat Ecol Evol 5, 273–284 (2021). https://doi.org/10.1038/s41559-020-01361-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing