Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

Abstract

Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human–nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of the potential for RAS to transform cities.
Fig. 2: Horizon scan process used to identify and prioritize opportunities and challenges associated with RAS for urban biodiversity and ecosystems.
Fig. 3: Opportunities associated with RAS for urban biodiversity and ecosystems, ranked according to round three participant scores.
Fig. 4: Challenges associated with RAS for urban biodiversity and ecosystems, ranked according to round three participant scores.

Data availability

Anonymized data are available from the University of Leeds institutional data repository120 at https://doi.org/10.5518/912.

References

  1. Schwab, K. The Fourth Industrial Revolution (Penguin, 2017).

  2. Marvin, S., White, A., Kovacic, M., Lockhart, A. & Macrorie, R. Urban Robotics and Automation: Critical Challenges, International Experiments and Transferable Lessons for the UK UK-RAS White Paper (UK-RAS Network, 2018).

  3. Salvini, P. Urban robotics: towards responsible innovations for our cities. Rob. Autom. Syst. 100, 278–286 (2018).

    Article  Google Scholar 

  4. Vougioukas, S. G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 365–392 (2019).

    Article  Google Scholar 

  5. Allan, B. M. et al. Futurecasting ecological research: the rise of technoecology. Ecosphere 9, e02163 (2018).

    Article  Google Scholar 

  6. Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).

    Article  Google Scholar 

  7. Dash, J. P., Watt, M. S., Paul, T. S. H., Morgenroth, J. & Hartley, R. Taking a closer look at invasive alien plant research: a review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 10, 2020–2033 (2019).

    Article  Google Scholar 

  8. Global Autonomous Robot Market—Industry Trends and Forecast to 2026 (Data Bridge Market Research, 2019).

  9. Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Du Toit, M. J. et al. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 180, 249–261 (2018).

    Article  Google Scholar 

  12. Nitoslawski, S. A., Galle, N. J., van den Bosch, C. K. & Steenberg, J. W. N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 51, 101770 (2019).

    Article  Google Scholar 

  13. Gulsrud, N. M. et al. ‘Rage against the machine’? The opportunities and risks concerning the automation of urban green infrastructure. Landsc. Urban Plan. 180, 85–92 (2018).

    Article  Google Scholar 

  14. Bibri, S. E. & Krogstie, J. Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain. Cities Soc. 31, 183–212 (2017).

    Article  Google Scholar 

  15. Colding, J. & Barthel, S. An urban ecology critique on the “Smart City” model. J. Clean. Prod. 164, 95–101 (2017).

    Article  Google Scholar 

  16. Martin, C. J., Evans, J. & Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 133, 269–278 (2018).

    Article  Google Scholar 

  17. Cantrell, B., Martin, L. J. & Ellis, E. C. Designing autonomy: opportunities for new wildness in the Anthropocene. Trends Ecol. Evol. 32, 156–166 (2017).

    Article  PubMed  Google Scholar 

  18. Luvisi, A. & Lorenzini, G. RFID-plants in the smart city: applications and outlook for urban green management. Urban For. Urban Green. 13, 630–637 (2014).

    Article  Google Scholar 

  19. Kahila-Tani, M., Broberg, A., Kyttä, M. & Tyger, T. Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan. Pract. Res. 31, 195–214 (2016).

    Article  Google Scholar 

  20. McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).

    Article  Google Scholar 

  21. Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article  Google Scholar 

  22. Gomez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).

    Article  Google Scholar 

  23. Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2019).

    Article  PubMed  Google Scholar 

  24. Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).

    Article  Google Scholar 

  25. Stanley, M. C. et al. Emerging threats in urban ecosystems: a horizon scanning exercise. Front. Ecol. Environ. 13, 553–560 (2015).

    Article  Google Scholar 

  26. Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. & Keane, A. The global conservation movement is diverse but not divided. Nat. Sustain. 2, 316–323 (2019).

    Article  Google Scholar 

  27. MacGregor-Fors, I. & Escobar-Ibáñez, J. F. Avian Ecology in Latin American Cityscapes (Springer, 2017).

  28. Dobbs, C. et al. Urban ecosystem services in Latin America: mismatch between global concepts and regional realities? Urban Ecosyst. 22, 173–187 (2019).

    Article  Google Scholar 

  29. Cunningham, M. L., Regan, M. A., Horberry, T., Weeratunga, K. & Dixit, V. Public opinion about automated vehicles in Australia: results from a large-scale national survey. Transp. Res. Part A Policy Pract. 129, 1–18 (2019).

    Article  Google Scholar 

  30. Kaur, K. & Rampersad, G. Trust in driverless cars: investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manag. 48, 87–96 (2018).

    Article  Google Scholar 

  31. Artmann, M., Kohler, M., Meinel, G., Gan, J. & Ioja, I. C. How smart growth and green infrastructure can mutually support each other—a conceptual framework for compact and green cities. Ecol. Indic. 96, 10–22 (2019).

    Article  Google Scholar 

  32. Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 281, 20133330 (2014).

    Article  Google Scholar 

  33. Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14, 760–771 (2015).

    Article  Google Scholar 

  34. Papa, E. & Ferreira, A. Sustainable accessibility and the implementation of automated vehicles: identifying critical decisions. Urban Sci. 2, 5 (2018).

    Article  Google Scholar 

  35. Stead, D. & Vaddadi, B. Automated vehicles and how they may affect urban form: a review of recent scenario studies. Cities 92, 125–133 (2019).

    Article  Google Scholar 

  36. Duarte, F. & Ratti, C.The impact of autonomous vehicles on cities: a review;. J. Urban Technol. 25, 3–18 (2018).

    Article  Google Scholar 

  37. Fagnant, D. J. & Kockelman, K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. A Policy Pract. 77, 167–181 (2015).

    Article  Google Scholar 

  38. Narayanan, S., Chaniotakis, E. & Antoniou, C. Shared autonomous vehicle services: a comprehensive review. Transp. Res. C Emerg. Technol. 111, 255–293 (2020).

    Article  Google Scholar 

  39. Heinrichs, D. in Autonomous Driving: Technical, Legal and Social Aspects (eds Maurer, M. et al.) 213–231 (Springer Berlin Heidelberg, 2016).

  40. Soteropoulos, A., Berger, M. & Ciari, F. Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp. Rev. 39, 29–49 (2019).

    Article  Google Scholar 

  41. Meyer, J., Becker, H., Bosch, P. M. & Axhausen, K. W. Autonomous vehicles: the next jump in accessibilities? Res. Transp. Econ. 62, 80–91 (2017).

    Article  Google Scholar 

  42. Hawkins, J. & Habib, K. N. Integrated models of land use and transportation for the autonomous vehicle revolution. Transp. Rev. 39, 66–83 (2019).

    Article  Google Scholar 

  43. Dupras, J. et al. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016).

    Article  Google Scholar 

  44. Loeb, B., Kockelman, K. M. & Liu, J. Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transp. Res. C Emerg. Technol. 89, 222–233 (2018).

    Article  Google Scholar 

  45. Samonte, M. J. C. et al. PHYTO: An IoT Urban Gardening Mobile App (Association for Computing Machinery, 2019).

  46. Canales-Ide, F., Zubelzu, S. & Rodriguez-Sinobas, L. Irrigation systems in smart cities coping with water scarcity: the case of Valdebebas, Madrid (Spain). J. Environ. Manag. 247, 187–195 (2019).

    Article  Google Scholar 

  47. Kolokotsa, D. Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Sol. Energy 154, 101–111 (2017).

    Article  Google Scholar 

  48. Taufik, T. & Hasanah, R. N. Light sensing smart blinds. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) 1–4 (IEEE, 2018); https://doi.org/10.1109/EECCIS.2018.8692805

  49. Kendal, D. et al. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 27, 629–637 (2018).

    Article  Google Scholar 

  50. Wheeler, M. M. et al. Continental-scale homogenization of residential lawn plant communities. Landsc. Urban Plan. 165, 54–63 (2017).

    Article  Google Scholar 

  51. Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

    Article  Google Scholar 

  52. Lam, T. L. & Xu, Y. S. Climbing strategy for a flexible tree climbing robot—treebot. IEEE Trans. Rob. 27, 1107–1117 (2011).

    Article  Google Scholar 

  53. Dallimer, M., Tang, Z. Y., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Latli, A., Michel, L. N., Lepoint, G. & Kestemont, P. River habitat homogenisation enhances trophic competition and promotes individual specialisation among young of the year fish. Freshw. Biol. 64, 520–531 (2019).

    Article  CAS  Google Scholar 

  55. Shaw, L. M., Chamberlain, D. & Evans, M. The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J. Ornithol. 149, 293–299 (2008).

    Article  Google Scholar 

  56. Ferguson, M., Roberts, H. E., McEachan, R. R. C. & Dallimer, M. Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landsc. Urban Plan. 175, 136–148 (2018).

    Article  Google Scholar 

  57. Leong, M., Dunn, R. R. & Trautwein, M. D.Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nesbitt, L., Meitner, M. J., Girling, C., Sheppard, S. R. J. & Lu, Y. H. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 181, 51–79 (2019).

    Article  Google Scholar 

  59. Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pope, R., Wu, J. & Boone, C. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the Phoenix metropolitan region of USA. Environ. Manag. 58, 753–766 (2016).

    Article  Google Scholar 

  61. Jenerette, G. D. et al. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 22, 353–365 (2007).

    Article  Google Scholar 

  62. Frumkin, H. et al. Nature contact and human health: a research agenda. Environ. Health Perspect. 125, 075001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rafael, S. et al. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 712, 136546 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Stern, R. E. et al. Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic. Transp. Res. D Transp. Environ. 67, 351–365 (2019).

    Article  Google Scholar 

  65. Twohig-Bennett, C. & Jones, A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 166, 628–637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thompson Coon, J. et al. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).

    Article  Google Scholar 

  68. Parsons, R., Tassinary, L. G., Ulrich, R. S., Hebl, M. R. & Grossman-Alexander, M. The view from the road: implications for stress recovery and immunization. J. Environ. Psychol. 18, 113–140 (1998).

    Article  Google Scholar 

  69. Hahmann, S., Miksch, J., Resch, B., Lauer, J. & Zipf, A. Routing through open spaces—a performance comparison of algorithms. Geo. Spat. Inf. Sci. 21, 247–256 (2018).

    Article  Google Scholar 

  70. Harper, C. D., Hendrickson, C. T., Mangones, S. & Samaras, C. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transp. Res. C Emerg. Technol. 72, 1–9 (2016).

    Article  Google Scholar 

  71. Wei, J. W., Lee, B. & Wen, L. B.Citizen science and the urban ecology of birds and butterflies—a systematic review. PLoS ONE 11, e0156425 (2016).

    Article  CAS  Google Scholar 

  72. Schuttler, S. G., Sorensen, A. E., Jordan, R. C., Cooper, C. & Shwartz, A.Bridging the nature gap: can citizen science reverse the extinction of experience? Front. Ecol. Environ. 16, 405–411 (2018).

    Article  Google Scholar 

  73. Jepson, P. & Ladle, R. J. Nature apps: waiting for the revolution. Ambio 44, 827–832 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Botello, B., Buehler, R., Hankey, S., Mondschein, A. & Jiang, Z. Planning for walking and cycling in an autonomous-vehicle future. Transp. Res. Interdiscip. Perspect. 1, 100012 (2019).

    Google Scholar 

  75. Gulsrud, N. M. in Routledge Research Companion to Landscape Architecture (eds Braae, E. & Steiner, H.) 103–111 (Routledge, 2018).

  76. Potts, S. G., Neumann, P., Vaissière, B. & Vereecken, N. J. Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci. Total Environ. 642, 665–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Kahn, P. H., Severson, R. L. & Ruckert, J. H. The human relation with nature and technological nature. Curr. Dir. Psychol. Sci. 18, 37–42 (2009).

    Article  Google Scholar 

  78. Mackay, C. M. L. & Schmitt, M. T. Do people who feel connected to nature do more to protect it? A meta-analysis. J. Environ. Psychol. 65, 101323 (2019).

    Article  Google Scholar 

  79. Truong, M. X. A. & Clayton, S. Technologically transformed experiences of nature: a challenge for environmental conservation? Biol. Conserv. 244, 108532 (2020).

    Article  Google Scholar 

  80. Alonzo, M., McFadden, J. P., Nowak, D. J. & Roberts, D. A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 17, 135–147 (2016).

    Article  Google Scholar 

  81. Fairbrass, A. J. et al. CityNet—deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 10, 186–197 (2019).

    Article  Google Scholar 

  82. Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    Article  PubMed  Google Scholar 

  83. Ampatzidis, Y., De Bellis, L. & Luvisi, A.iPathology: robotic applications and management of plants and plant diseases. Sustainability 9, 1010 (2017).

    Article  Google Scholar 

  84. Nasi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83 (2018).

    Article  Google Scholar 

  85. Smith, R. J., Verissimo, D., Isaac, N. J. B. & Jones, K. E. Identifying Cinderella species: uncovering mammals with conservation flagship appeal. Conserv. Lett. 5, 205–212 (2012).

    Article  Google Scholar 

  86. Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).

    Article  Google Scholar 

  87. Colding, J., Colding, M. & Barthel, S.The smart city model: a new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 47, 179–187 (2020).

    Article  Google Scholar 

  88. Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).

    Article  Google Scholar 

  89. Jurdak, R. et al. Autonomous surveillance for biosecurity. Trends Biotechnol. 33, 201–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).

    Article  Google Scholar 

  91. Mulero-Pazmany, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PLoS ONE 12, e0178448 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Zvereva, E. L. & Kozlov, M. V. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. Res. 17, 297–311 (2010).

    Article  CAS  Google Scholar 

  95. Zvereva, E. L., Toivonen, E. & Kozlov, M. V. Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob. Ecol. Biogeogr. 17, 305–319 (2008).

    Article  Google Scholar 

  96. Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).

    Article  Google Scholar 

  97. Irwin, A. The dark side of light: how artificial lighting is harming the natural world. Nature 553, 268–270 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Cabrera-Cruz, S. A., Smolinsky, J. A. & Buler, J. J. Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci. Rep. 8, 3261 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cashikar, A., Li, J. & Biswas, P. Particulate matter sensors mounted on a robot for environmental aerosol measurements. J. Environ. Eng. 145, 04019057 (2019).

    Article  CAS  Google Scholar 

  101. Shah, M., Shah, S. K. & Shah, M. Autonomous robotic vehicle for oil spills cleaning with nano particles. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2018).

  102. Alfeo, A. L. et al. Urban swarms: a new approach for autonomous waste management. Preprint at arXiv https://doi.org/10.1109/ICRA.2019.8794020 (2019).

  103. Perkins, D. N., Brune Drisse, M.-N., Nxele, T. & Sly, P. D. E-waste: a global hazard. Ann. Glob. Health 80, 286–295 (2014).

    Article  PubMed  Google Scholar 

  104. Boyer, T. & Polasky, S. J.Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24, 744–755 (2004).

    Article  Google Scholar 

  105. Rouse, M. The worldwide urban water and wastewater infrastructure challenge. Int. J. Water Resour. Dev. 30, 20–27 (2014).

    Article  Google Scholar 

  106. Yuan, Z. G. et al. Sweating the assets—the role of instrumentation, control and automation in urban water systems. Water Res. 155, 381–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Hall, S., Price, R. & Mandhani, N. Use of autonomous vehicles for drinking water monitoring and management in an urban environment. In Proc. ASAE Annual International Meeting 7855–7862 (American Society of Association Executives, 2004).

  108. Troutman, S. C., Love, N. G. & Kerkez, B. Balancing water quality and flows in combined sewer systems using real-time control. Environ. Sci. Water Res. Technol. 6, 1357–1369 (2020).

    Article  CAS  Google Scholar 

  109. McDonald, W. Drones in urban stormwater management: a review and future perspectives. Urban Water J. 16, 505–518 (2019).

    Article  CAS  Google Scholar 

  110. Kerkez, B. et al. Smarter stormwater systems. Environ. Sci. Technol. 50, 7267–7273 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Chen, Y. & Han, D. Water quality monitoring in smart city: a pilot project. Autom. Constr. 89, 307–316 (2018).

    Article  Google Scholar 

  112. Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).

    Article  Google Scholar 

  113. Prudencio, L. & Null, S. E.Stormwater management and ecosystem services: a review. Environ. Res. Lett. 13, 033002 (2018).

    Article  Google Scholar 

  114. Sadler, G. R., Lee, H.-C., Lim, R. S.-H. & Fullerton, J. Research article: recruitment of hard-to-reach population subgroups via adaptations of the snowball sampling strategy. Nurs. Health Sci. 12, 369–374 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mahler, A. G. Global South (Oxford Univ. Press, 2017); https://doi.org/10.1093/OBO/9780190221911-0055

  116. Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    Article  PubMed  Google Scholar 

  117. Danziger, S., Levav, J. & Avnaim-Pesso, L. Extraneous factors in judicial decisions. Proc. Natl Acad. Sci. USA 108, 6889–6892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bryer, J. & Speerschneider, K. likert: Analysis and visualization likert items https://cran.r-project.org/web/packages/likert/likert.pdf (2016).

  119. R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  120. Goddard, M. A. & Dallimer, M. University of Leeds Data Repository (Univ. Leeds, 2020); https://doi.org/10.5518/912

  121. Future Foresight (Dubai Future Foundation, 2018); https://www.dubaifuture.gov.ae/publications/

Download references

Acknowledgements

We are grateful to all of the participants who took part in this study, and to J. Bentley for preparing the figures. This work was funded by the UK government’s Engineering and Physical Sciences Research Council (grant EP/N010523/1: ‘Balancing the Impact of City Infrastructure Engineering on Natural Systems using Robots’). Z.G.D. was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (consolidator grant no. 726104).

Author information

Authors and Affiliations

Authors

Contributions

M.D. conceived the study. M.D., M.A.G., Z.G.D., S.G., J.C.F. and M.J.F. developed and tested the questionnaire and webinar materials. A.A., T.A., P.M.L.A., F.A., C.A., A.J.B., A. Barkwith, A. Berland, C.J.B., C.C.R.-B., L.B.B., D.C., R.C., T.C., S. Connop, S. Crossland, M.C.D., D.A.D., C.D., C.T.D., E.C.E., F.J.E., P.G., N.M.G., B.G., A.K.H., J.D.H., C.H., M.H., D.F.H., T.I., I.-C.I., D.K., T.K., I.K., S.J.L., S.B.L., I.M.-F., P. Manning, P. Massini, S.M., D.D.M., A.O., G.P.L., L.P.-U., K.P., G.P., T.J.P., K.E.P., R.A.R., U.R., S.G.P., H.R., J.P.S., S.d.S., S.S., C.E.S., A.S., T.S., R.P.H.S., C.D.S., M.C.S., T.V.d.V., S.J.V., P.H.W., C.-L.W., M.W., N.S.G.W., J.Y., K.Y. and K.P.Y. contributed data. M.A.G. collated and analysed these data. M.A.G., M.D. and Z.G.D. led writing the paper. A.A., T.A., P.M.L.A., F.A., C.A., A.J.B., A. Barkwith, A. Berland, C.J.B., C.C.R.-B., L.B.B., D.C., R.C., T.C., S. Connop, S. Crossland, M.C.D., D.A.D., C.D., C.T.D., E.C.E., F.J.E., N.M.G., B.G., A.K.H., J.D.H., C.H., M.H., D.F.H., T.I., I.-C.I., D.K., T.K., I.K., S.J.L., S.B.L., I.M.-F., P. Manning, P. Massini, S.M., D.D.M., A.O., G.P.L., L.P.-U., K.P., G.P., T.J.P., K.E.P., R.A.R., U.R., S.G.P., H.R., J.P.S., S.d.S., S.S., C.E.S., A.S., R.P.H.S., C.D.S., M.C.S., T.V.d.V., S.J.V., P.H.W., C.-L.W., M.W., N.S.G.W., J.Y., K.Y. and K.P.Y. contributed and agreed to the final version.

Corresponding author

Correspondence to Martin Dallimer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Perrine Hamel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The Global North (green) and Global South (blue), with countries represented by participants in round one of the horizon scan indicated with darker shading.

Countries represented from the Global North were: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Israel, Italy, Netherlands, New Zealand, Poland, Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom and United States of America. Countries represented from the Global South were: Argentina, Brazil, Chile, China, Colombia, Ethiopia, India, Malawi, Malaysia, Mexico, Nigeria, South Africa and Togo.

Extended Data Fig. 2 Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants working in the research sector and other sectors.

a, Participants working in the research sector (n = 66). b, Participants working in other sectors (n = 32). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 32 opportunities. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Extended Data Fig. 3 Challenges associated with robotics and automated systems for urban biodiversity and ecosystems for participants working in the research sector and other sectors.

a, Participants working in the research sector (n = 66). b, Participants working in other sectors (n = 32). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 38 challenges. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording agreed by the participants for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Extended Data Fig. 4 Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants based in the Global North and Global South.

a, Participants based in the Global North (n = 87). b, Participants based in the Global South (n = 11). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 32 opportunities. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Extended Data Fig. 5 Challenges associated with robotics and automated systems for urban biodiversity and ecosystems according to participants based in the Global North and Global South.

a, Participants based in the Global North (n = 87). b, Participants based in the Global South (n = 11). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 38 challenges. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). Boxes and * indicate a significant difference between the proportions of participants in (a) and (b) scoring the item greater than zero. The full wording agreed by the participants for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Extended Data Fig. 6 Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants with environmental expertise and those with non-environmental expertise.

a, Participants with environmental expertise (n = 65). b, Participants with non-environmental expertise (n = 33). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 32 opportunities. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). Boxes and * indicate a significant difference between the proportions of participants in (a) and (b) scoring the item greater than zero. The full wording agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Extended Data Fig. 7 Challenges associated with robotics and automated systems for urban biodiversity and ecosystems according to participants with environmental expertise and those with non-environmental expertise.

a, Participants with environmental expertise (n = 65). b, Participants with non-environmental expertise (n = 33). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 38 challenges. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). Boxes and * indicate a significant difference between the proportions of participants in (a) and (b) scoring the item greater than zero. The full wording agreed by the participants for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is for cross referencing between figures and tables.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goddard, M.A., Davies, Z.G., Guenat, S. et al. A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nat Ecol Evol 5, 219–230 (2021). https://doi.org/10.1038/s41559-020-01358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01358-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing