Abstract
Parallelism, the evolution of similar traits in populations diversifying in similar conditions, provides strong evidence of adaptation by natural selection. Many studies of parallelism focus on comparisons of different ecotypes or contrasting environments, defined a priori, which could upwardly bias the apparent prevalence of parallelism. Here, we estimated genomic parallelism associated with components of environmental and phenotypic variation at an intercontinental scale across four freshwater adaptive radiations (Alaska, British Columbia, Iceland and Scotland) of the three-spined stickleback (Gasterosteus aculeatus). We combined large-scale biological sampling and phenotyping with restriction site associated DNA sequencing (RAD-Seq) data from 73 freshwater lake populations and four marine ones (1,380 fish) to associate genome-wide allele frequencies with continuous distributions of environmental and phenotypic variation. Our three main findings demonstrate that (1) quantitative variation in phenotypes and environments can predict genomic parallelism; (2) genomic parallelism at the early stages of adaptive radiations, even at large geographic scales, is founded on standing variation; and (3) similar environments are a better predictor of genome-wide parallelism than similar phenotypes. Overall, this study validates the importance and predictive power of major phenotypic and environmental factors likely to influence the emergence of common patterns of genomic divergence, providing a clearer picture than analyses of dichotomous phenotypes and environments.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex
BMC Ecology and Evolution Open Access 01 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
BAM files of the aligned reads for each individual and corresponding sample information have been deposited in the European Nucleotide Archive database under the project PRJEB20851, with the sample accession numbers ERS1831811–ERS1833111 and run accession numbers ERR2055459–ERR2056759.
Code availability
The scripts used for all analyses are archived through Github/Zenodo (https://doi.org/10.5281/zenodo.4024117).
References
Schluter, D. The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).
Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).
Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C. & Jones, A. G. Understanding the evolution and stability of the G-matrix. Evolution 62, 2451–2461 (2008).
Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists E. O. Wilson award address. Am. Nat. 175, 623–639 (2010).
Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 5168 (2014).
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).
Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton, 1989).
Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
Roff, D. The evolution of the G matrix: selection or drift? Heredity 84, 135–142 (2000).
Arendt, J. & Reznick, D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).
Stuart, Y. E. Divergent uses of ‘parallel evolution’ during the history of the American naturalist. Am. Nat. 193, 11–19 (2019).
Oke, K. B., Rolshausen, G., LeBlond, C. & Hendry, A. P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 190, 1–16 (2017).
McGee, M. D., Neches, R. Y. & Seehausen, O. Evaluating genomic divergence and parallelism in replicate ecomorphs from young and old cichlid adaptive radiations. Mol. Ecol. 25, 260–268 (2016).
Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).
MacColl, A. D. C. The ecological causes of evolution. Trends Ecol. Evol. 26, 514–522 (2011).
Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).
Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. R. Soc. B 279, 5039–5047 (2012).
Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).
Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).
Jacobs, A. et al. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet. 16, 1008658 (2020).
Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
Foster, S. & Bell, M. The Evolutionary Biology of the Threespine Stickleback (Oxford Univ. Press, 1994).
Taylor, E. B. & McPhail, J. D. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus. Proc. R. Soc. Lond. B 267, 2375–2384 (2000).
Kaeuffer, R., Peichel, C. L., Bolnick, D. I. & Hendry, A. P. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66, 402–418 (2012).
Ravinet, M., Prodöhl, P. A. & Harrod, C. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. J. Evol. Biol. 26, 186–204 (2013).
Magalhaes, I. S., D’Agostino, D., Hohenlohe, P. A. & MacColl, A. D. C. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland. Mol. Ecol. 25, 4319–4336 (2016).
Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).
Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83–90 (2012).
Raeymaekers, J. A. M. et al. Adaptive and non-adaptive divergence in a common landscape. Nat. Commun. 8, 267 (2017).
Rennison, D. J., Stuart, Y. E., Bolnick, D. I. & Peichel, C. L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Phil. Trans. R. Soc. B 374, 20180241 (2019).
MacColl, A. D. C. & Aucott, B. Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence et al. 2013. Ecol. Evol. 4, 3509–3513 (2014).
Spoljaric, M. A. & Reimchen, T. E. 10,000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish Biol. 70, 1484–1503 (2007).
De Schamphelaere, K. A. C. et al. Reproductive toxicity of dietary zinc to Daphnia magna. Aquat. Toxicol. 70, 233–244 (2004).
Martins, C., Jesus, F. T. & Nogueira, A. J. A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina: introducing new data in an ‘old’ issue. Ecotoxicology 26, 1157–1169 (2017).
Miller, C. T. et al. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197, 405–420 (2014).
Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).
Thompson, K. A., Osmond, M. M. & Schluter, D. Parallel genetic evolution and speciation from standing variation. Evol. Lett. 3, 129–141 (2019).
Nelson, T. C. & Cresko, W. A. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2, 9–21 (2018).
Paccard, A. et al. Repeatability of adaptive radiation depends on spatial scale: regional versus global replicates of stickleback in lake versus stream habitats. J. Hered. 111, 43–56 (2019).
Baldo, L., Riera, J. L., Salzburger, W. & Barluenga, M. Phylogeography and ecological niche shape the cichlid fish gut microbiota in Central American and African lakes. Front. Microbiol. 10, 2372 (2019).
Fang, B., Kemppainen, P., Momigliano, P. & Merilä, J. On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat. Ecol. Evol. 4, 1105–1115 (2020).
Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).
Liu, S., Hansen, M. M. & Jacobsen, M. W. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences. Mol. Ecol. 25, 5187–5202 (2016).
Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).
Garduno-Paz, M. V., Couderc, S. & Adams, C. E. Habitat complexity modulates phenotype expression through developmental plasticity in the threespine stickleback. Biol. J. Linn. Soc. 100, 407–413 (2010).
Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).
Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).
Guo, B., DeFaveri, J., Sotelo, G., Nair, A. & Merilä, J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 13, 19 (2015).
Glazer, A. M., Cleves, P. A., Erickson, P. A., Lam, A. Y. & Miller, C. T. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 5, 19 (2014).
Day, T., Pritchard, J. & Schluter, D. A comparison of two sticklebacks. Evolution 48, 1723–1734 (1994).
Franchini, P. et al. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol. Ecol. 23, 1828–1845 (2014).
McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).
Peichel, C. L. & Marques, D. A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Phil. Trans. R. Soc. B 372, 20150486 (2017).
Marques, D. A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 12, e1005887 (2016).
Burke, M. K., Liti, G. & Long, A. D. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol. Biol. Evol. 31, 3228–3239 (2014).
Kang, L., Aggarwal, D. D., Rashkovetsky, E., Korol, A. B. & Michalak, P. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom. 17, 233 (2016).
Gompert, Z. & Messina, F. J. Genomic evidence that resource‐based trade‐offs limit host‐range expansion in a seed beetle. Evolution 70, 1249–1264 (2016).
Berner, D., Moser, D., Roesti, M., Buescher, H. & Salzburger, W. Genetic architecture of skeletal evolution in European lake and stream stickleback. Evolution 68, 1792–1805 (2014).
Pease, J. B., Haak, D. C., Hahn, M. W. & Moyle, L. C. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14, e1002379 (2016).
Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).
Roesti, M., Kueng, B., Moser, D. & Berner, D. The genomics of ecological vicariance in threespine stickleback fish. Nat. Commun. 6, 8767 (2015).
Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).
Roesti, M., Moser, D. & Berner, D. Recombination in the threespine stickleback genome—patterns and consequences. Mol. Ecol. 22, 3014–3027 (2013).
Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).
Meier, J. I., Marques, D. A., Wagner, C. E., Excoffier, L. & Seehausen, O. Genomics of parallel ecological speciation in Lake Victoria cichlids. Mol. Biol. Evol. 35, 1489–1506 (2018).
Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).
Terekhanova, N. V. et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).
Westram, A. M. et al. Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evol. Lett. 2, 297–309 (2018).
Shimada, Y., Shikano, T. & Merilä, J. A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol. Biol. Evol. 28, 181–193 (2011).
Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).
Henning, F. & Meyer, A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu. Rev. Genomics Hum. Genet. 15, 417–441 (2014).
Kess, T., Galindo, J. & Boulding, E. G. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Int. J. Bus. Innov. Res. 17, 8311–8327 (2018).
Bohutínská, M. et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Preprint at BioRxiv https://doi.org/10.1101/2020.03.24.005397 (2020).
Rennison, D. J., Samuk, K., Owens, G. L. & Miller, S. E. Shared patterns of genome-wide differentiation are more strongly predicted by geography than by ecology. Am. Nat. 195, 192–200 (2019).
Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric Swiss stickleback. J. Evol. Biol. 26, 2691–2709 (2013).
Berner, D., Roesti, M., Hendry, A. P. & Salzburger, W. Constraints on speciation suggested by comparing lake–stream stickleback divergence across two continents. Mol. Ecol. 19, 4963–4978 (2010).
Giles, N. Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Anim. Behav. 31, 1192–1194 (1983).
Spence, R., Wootton, R. J., Barber, I., Przybylski, M. & Smith, C. Ecological causes of morphological evolution in the three-spined stickleback. Ecol. Evol. 3, 1717–1726 (2013).
Reimchen, T. E. Incidence and intensity of Cyathocephalus truncatus and Schistocephalus solidus infection in Gasterosteus aculeatus. Can. J. Zool. 60, 1091–1095 (1982).
MacColl, A. D. C. Parasite burdens differ between sympatric three-spined stickleback species. Ecography 32, 153–160 (2009).
Stutz, W. E., Lau, O. L. & Bolnick, D. I. Contrasting patterns of phenotype-dependent parasitism within and among populations of threespine stickleback. Am. Nat. 183, 810–825 (2014).
Bassham, S., Catchen, J., Lescak, E., von Hippel, F. A. & Cresko, W. A. Repeated selection of alternatively adapted haplotypes creates sweeping genomic remodeling in stickleback. Genetics 209, 921–939 (2018).
Etter, P. D., Preston, J. L., Bassham, S., Cresko, W. A. & Johnson, E. A. Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6, e18561 (2011).
Ali, O. A. et al. Rad capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/
Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
Yeaman, S. et al. Convergent local adaptation to climate in distantly related conifers. Science 353, 1431–1433 (2016).
Storey, J. qvalue: Q-value estimation for false discovery rate control. R package version 2.0.0 (2015).
Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss Army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).
Acknowledgements
We thank S. Robertson, R. Young, A. Rahman, B. Santos, S. Goodacre, P. Halldorsson, B. K. Kristjánsson, D. Schluter, K. Samuk, D. Rennison and S. Miller for help with the sampling and sampling permits. We thank A. Lowe and L. Dean for help with the DNA extractions; C. Wiench, A. Stahlke and S. Hendricks for help making the RAD libraries; and J. Brookfield for discussion of the probability calculations. This work was funded by a NERC grant (no. NE/J02239X/1 to A.D.C.M.), and further support was provided by NIH grant no. P30GM103324.
Author information
Authors and Affiliations
Contributions
I.S.M., A.D.C.M. and J.R.W. conceived the project, interpreted the data and wrote the manuscript. I.S.M., D.D. and A.D.C.M. performed the fieldwork. I.S.M., M.M. and D.D. generated the phenotypic data. I.S.M. and P.A.H. generated the RAD data, and J.R.W., I.S.M. and P.A.H. analysed it. P.A.H., M.A.B. and S.S. helped with the sampling and revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1 and 2, Methods, Figs. 1–8, Tables 1–14, captions for Supplementary Data 1–3 and references.
Supplementary Data 1
All Bayenv2 associated windows for window sizes of 50 kb, 75 kb, 100 kb, 200 kb and 0.1 cM.
Supplementary Data 2
Genes located in Bayenv2 associated windows along with GO information from Biomart.
Supplementary Data 3
Summary table with details of each individual analysed.
Rights and permissions
About this article
Cite this article
Magalhaes, I.S., Whiting, J.R., D’Agostino, D. et al. Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nat Ecol Evol 5, 251–261 (2021). https://doi.org/10.1038/s41559-020-01341-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-020-01341-8
This article is cited by
-
Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex
BMC Ecology and Evolution (2022)
-
Evolution of central neural circuits: state of the art and perspectives
Nature Reviews Neuroscience (2022)