Geological alteration of Precambrian steroids mimics early animal signatures

Abstract

The absence of unambiguous animal body fossils in rocks older than the late Ediacaran has rendered fossil lipids the most promising tracers of early organismic complexity. Yet much debate surrounds the various potential biological sources of putative metazoan steroids found in Precambrian rocks. Here we show that 26-methylated steranes—hydrocarbon structures currently attributed to the earliest animals—can form via geological alteration of common algal sterols, which carries important implications for palaeo-ecological interpretations and inhibits the use of such unconventional ‘sponge’ steranes for reconstructing early animal evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The geological record of steroid evolution.
Fig. 2: Alkylsteranes in Neoproterozoic rocks and in sterol pyrolysates.

Data availability

All data are available in the Supplementary Information.

References

  1. 1.

    Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

    Article  CAS  Google Scholar 

  3. 3.

    Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. Giving the early fossil record of sponges a squeeze. Biol. Rev. 89, 972–1004 (2014).

    Article  Google Scholar 

  4. 4.

    Chang, S., Zhang, L., Clausen, S., Bottjer, D. J. & Feng, Q. The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems. Precambrian Res. 333, 105438 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Xiao, S., Hu, J., Yuan, X., Parsley, R. L. & Cao, R. Articulated sponges from the Lower Cambrian Hetang Formation in southern Anhui, South China: their age and implications for the early evolution of sponges. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 89–117 (2005).

    Article  Google Scholar 

  6. 6.

    Bobrovskiy, I. et al. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361, 1246–1249 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Zumberge, J. A. et al. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nat. Ecol. Evol. 2, 1709–1714 (2018).

    Article  Google Scholar 

  9. 9.

    Zumberge, J. A., Rocher, D. & Love, G. D. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18, 326–347 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Antcliffe, J. B. The oldest compelling evidence for sponges is still early Cambrian in age - Reply to Love and Summons (2015). Palaeontology 58, 1137–1139 (2015).

    Article  Google Scholar 

  14. 14.

    Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

    Article  Google Scholar 

  15. 15.

    Botting, J. P. & Nettersheim, B. J. Searching for sponge origins. Nat. Ecol. Evol. 2, 1685–1686 (2018).

    Article  Google Scholar 

  16. 16.

    Nettersheim, B. J. et al. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nat. Ecol. Evol. 3, 577–581 (2019).

    Article  Google Scholar 

  17. 17.

    Hallmann, C. et al. Reply to: Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils. Nat. Ecol. Evol. 4, 37–39 (2020).

    Article  Google Scholar 

  18. 18.

    Love, G. D. et al. Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils. Nat. Ecol. Evol. 4, 34–46 (2020).

    Article  Google Scholar 

  19. 19.

    Urry, W. H., Stacey, F. W., Huyser, E. S. & Juveland, O. O. The peroxide- and light-induced additions of alcohols to olefins. J. Am. Chem. Soc. 76, 450–455 (1954).

    CAS  Article  Google Scholar 

  20. 20.

    Summons, R. E. & Capon, R. J. Identification and significance of 3β-ethyl steranes in sediments and petroleum. Geochim. Cosmochim. Acta 55, 2391–2395 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    Summons, R. E. & Capon, R. J. Fossil steranes with unprecedented methylation in ring-A. Geochim. Cosmochim. Acta 52, 2733–2736 (1988).

    CAS  Article  Google Scholar 

  22. 22.

    Alexander, R., Berwick, L. & Pierce, K. Single carbon surface reactions of 1-octadecene and 2,3,6-trimethylphenol on activated carbon: implications for methane formation in sediments. Org. Geochem. 42, 540–547 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Given, P. H. & Hill, L. W. Catalysis of the isomerisation and polymerisation of olefins on carbon blacks. Carbon 6, 525–535 (1968).

    CAS  Article  Google Scholar 

  24. 24.

    Meier, J. A. & Hill, L. W. Carbon black catalyzed olefin isomerization: a heterogeneous site model based on rate dependence on catalyst concentration. J. Catal. 87, 80–87 (1974).

    Article  Google Scholar 

  25. 25.

    Alexander, R., Dawson, D., Pierce, K. & Murray, A. Carbon catalysed hydrogen exchange in petroleum source rocks. Org. Geochem. 40, 951–955 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Hoshino, Y. et al. Cryogenian evolution of stigmasterol biosynthesis. Sci. Adv. 3, e1700887 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the proterozoic of arctic Canada. Science 250, 104–107 (1990).

    CAS  Article  Google Scholar 

  28. 28.

    Idler, D. R., Saito, A. & Wiseman, P. Sterols in red algae (Rhodophyceae). Steroids 11, 465–473 (1968).

    CAS  Article  Google Scholar 

  29. 29.

    Fattorusso, E. et al. Sterols of some red algae. Phytochemistry 14, 1579–1582 (1975).

    CAS  Article  Google Scholar 

  30. 30.

    Adam, P., Philippe, E. & Albrecht, P. Photochemical sulfurization of sedimentary organic matter: a widespread process occurring at early diagenesis in natural environments? Geochim. Cosmochim. Acta 62, 265–271 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Rubinstein, B. I., Sieskind, O. & Albrecht, P. Rearranged sterenes in a shale: occurrence and simulated formation. Org. Geochem. 11, 1973–1976 (1975).

    Google Scholar 

  32. 32.

    Dahl, J. E., Moldowan, J. M., McCaffrey, M. A. & Lipton, P. A. A new class of natural products revealed by 3β-alkyl steranes in petroleum. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  33. 33.

    McCaffrey, M. A. et al. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen. Geochim. Cosmochim. Acta 58, 529–532 (1994).

    CAS  Article  Google Scholar 

  34. 34.

    Bobrovskiy, I. et al. Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01334-7 (2020).

  35. 35.

    Xiao, S. & Laflamme, M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 31–40 (2008).

    Article  Google Scholar 

  36. 36.

    van Maldegem, L. M. et al. Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth. Nat. Commun. 10, 476 (2019).

    Article  CAS  Google Scholar 

  37. 37.

    Hallmann, C., Kelly, A. E., Gupta, S. N. & Summons, R. E. in Quantifying the Evolution of Early Life: Numerical Approaches to the Evaluation of Fossils and Ancient Ecosystems Vol. 36 (eds Laflamme, M. et al.) 355–401 (Springer, 2011).

  38. 38.

    van Maldegem, L. M. Molecular and Isotopic Signatures of Life Surrounding the Neoproterozoic Snowball Earth Events. PhD thesis, Univ. Bremen (2017); https://media.suub.uni-bremen.de/handle/elib/1535

  39. 39.

    Adam, P., Schaeffer, P. & Brocks, J. J. Synthesis of 26-methyl cholestane and identification of cryostanes in mid-Neoproterozoic sediments. Org. Geochem. 115, 246–249 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Sousa Júnior, G. R. et al. Organic matter in the Neoproterozoic cap carbonate from the Amazonian Craton, Brazil. J. S. Am. Earth Sci. 72, 7–24 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Dahl, J. E. et al. Extended 3β-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts. Geochim. Cosmochim. Acta 59, 3717–3729 (1995).

    CAS  Article  Google Scholar 

  42. 42.

    Weiss, H. et al. The Norwegian Industry Guide to Organic Geochemical Analyses 4th edn (Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate, 2000).

  43. 43.

    Schaeffer, P., Fache-Dany, F., Trendel, J. M. & Albrecht, P. Polar constituents of organic matter rich marls from evaporitic series of the Mulhouse basin. Org. Geochem. 20, 1227–1236 (1993).

    CAS  Article  Google Scholar 

  44. 44.

    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Tarozo and P. Pringle for laboratory support, I. Bobrovskiy for discussions and helpful comments on the manuscript, P. Sansjofre for sharing Araras Group samples, the National Park Service (GRCA-00645) for permission to sample the Chuar Group and G. Love for providing a 26-mes reference sample. This work was funded by the Max-Planck-Society and the Deutsche Forschungsgemeinschaft (Research Center/Cluster of Excellence 309: MARUM - Center for Marine Environmental Sciences). We further acknowledge the French National Research Agency (CNRS; P.S. and P.A.) and the Australian Research Council (grant nos. DP1095247 and DP160100607 to J.J.B.).

Author information

Affiliations

Authors

Contributions

L.M.v.M., B.J.N. and C.H. designed the research, analysed all geochemical data and wrote the manuscript with input from A.L., J.J.B., P.S. and P.A., who also assisted with interpretation. L.M.v.M. conducted the geological analyses. B.J.N. and A.L. performed pyrolysis experiments on modern sterols. P.A. and P.S. synthesized standards of 3-alkylsteranes and 26-mec.

Corresponding authors

Correspondence to Lennart M. van Maldegem or Benjamin J. Nettersheim or Christian Hallmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–5, Tables 1–4 and refs. 1–21.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Maldegem, L.M., Nettersheim, B.J., Leider, A. et al. Geological alteration of Precambrian steroids mimics early animal signatures. Nat Ecol Evol (2020). https://doi.org/10.1038/s41559-020-01336-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing