Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A meta-analysis of biological impacts of artificial light at night

Abstract

Natural light cycles are being eroded over large areas of the globe by the direct emissions and sky brightening that result from sources of artificial night-time light. This is predicted to affect wild organisms, particularly because of the central role that light regimes play in determining the timing of biological activity. Although many empirical studies have reported such effects, these have focused on particular species or local communities and have thus been unable to provide a general evaluation of the overall frequency and strength of these impacts. Using a new database of published studies, we show that exposure to artificial light at night induces strong responses for physiological measures, daily activity patterns and life history traits. We found particularly strong responses with regards to hormone levels, the onset of daily activity in diurnal species and life history traits, such as the number of offspring, predation, cognition and seafinding (in turtles). So far, few studies have focused on the impact of artificial light at night on ecosystem functions. The breadth and often strength of biological impacts we reveal highlight the need for outdoor artificial night-time lighting to be limited to the places and forms—such as timing, intensity and spectrum—where it is genuinely required by the people using it to minimize ecological impacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Physiological, phenological, life history trait, activity pattern and population/community-based responses to ALAN exposure.
Fig. 2: Effect sizes for the measures from the main categories.
Fig. 3: Activity patterns and light intensity.

Data availability

All data generated or analysed during this study are available from the Dryad Digital Repository160.

Code availability

The computer code for the meta-analysis is available from the Dryad Digital Repository160.

References

  1. 1.

    Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2015).

    Google Scholar 

  2. 2.

    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. Camb. Phil. Soc. 88, 912–927 (2013).

    Google Scholar 

  3. 3.

    Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Phil. Trans. R. Soc. B 370, 20140133 (2015).

    PubMed  Google Scholar 

  4. 4.

    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Google Scholar 

  7. 7.

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Google Scholar 

  8. 8.

    Bradshaw, W. E. & Holzapfel, C. M. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).

    CAS  PubMed  Google Scholar 

  9. 9.

    Matzke, E. B. The effect of street lights in delaying leaf-fall in certain trees. Am. J. Bot. 23, 446–452 (1936).

    Google Scholar 

  10. 10.

    Verheijen, F. J. The mechanisms of the trapping effect of artificial light sources upon animals. Arch. Neerl. Zool. 13, 1–107 (1960).

    Google Scholar 

  11. 11.

    Howell, J. C., Laskey, A. R. & Tanner, J. T. Bird mortality at airport ceilometers. Wilson Bull. 66, 207–215 (1954).

    Google Scholar 

  12. 12.

    Stone, E. L., Jones, G. & Harris, S. Street lighting disturbs commuting bats. Curr. Biol. 19, 1123–1127 (2009).

    CAS  PubMed  Google Scholar 

  13. 13.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl Acad. Sci. USA 114, 11175–11180 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Sanders, D., Kehoe, R., Cruse, D., van Veen, F. J. F. & Gaston, K. J. Low levels of artificial light at night strengthen top-down control in insect food web. Curr. Biol. 28, 2474–2478.e3 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Spoelstra, K., Verhagen, I., Meijer, D. & Visser, M. E. Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (Parus major). Proc. Biol. Sci. 285, 20172751 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Perkin, E. K. et al. The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere 2, 122 (2011).

    Google Scholar 

  18. 18.

    Rich, C. & Longcore, T. Ecological Consequences of Artificial Night Lighting (Island Press, 2006).

  19. 19.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  20. 20.

    Sánchez-Tójar, A. et al. Meta-analysis challenges a textbook example of status signalling and demonstrates publication bias. eLife 7, e37385 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).

    Google Scholar 

  22. 22.

    Bertolotti, L. & Salmon, M. Do embedded roadway lights protect sea turtles? Environ. Manage. 36, 702–710 (2005).

    PubMed  Google Scholar 

  23. 23.

    Russ, A., Rüger, A. & Klenke, R. Seizing the night: European blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).

    Google Scholar 

  24. 24.

    Threlfall, C. G., Law, B. & Banks, P. B. The urban matrix and artificial light restricts the nightly ranging behaviour of Gould’s long-eared bat (Nyctophilus gouldi). Austral Ecol. 38, 921–930 (2013).

    Google Scholar 

  25. 25.

    Mathews, F. et al. Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Phil. Trans. R. Soc. B 370, 20140124 (2015).

    PubMed  Google Scholar 

  26. 26.

    Stone, E. L., Harris, S. & Jones, G. Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm. Biol. 80, 213–219 (2015).

    Google Scholar 

  27. 27.

    Dominoni, D. M., Carmona-Wagner, E. O., Hofmann, M., Kranstauber, B. & Partecke, J. Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J. Anim. Ecol. 83, 681–692 (2014).

    PubMed  Google Scholar 

  28. 28.

    Brüning, A., Hölker, F., Franke, S., Kleiner, W. & Kloas, W. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus. Fish Physiol. Biochem. 44, 1–12 (2018).

    PubMed  Google Scholar 

  29. 29.

    Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 394–400 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. & Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manage. 92, 2714–2722 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Gaston, K. J., Davies, T. W., Bennie, J. & Hopkins, J. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49, 1256–1266 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Greco, T. et al. How to impute study-specific standard deviations in meta-analyses of skewed continuous endpoints? World J. Metaanal. 3, 215–224 (2015).

    Google Scholar 

  33. 33.

    Altermatt, F. & Ebert, D. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol. Lett. 12, 20160111 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I. C., Avisar, D. & Levy, O. Red Sea corals under artificial light pollution at night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).

    Google Scholar 

  35. 35.

    Azam, C. et al. Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Glob. Change Biol. 21, 4333–4341 (2015).

    Google Scholar 

  36. 36.

    Azam, C. et al. Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity. Landsc. Urban Plan. 175, 123–135 (2018).

    Google Scholar 

  37. 37.

    Bailey, L. A., Brigham, R. M., Bohn, S. J., Boyles, J. G. & Smit, B. An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection. Oecologia 190, 367–374 (2019).

    PubMed  Google Scholar 

  38. 38.

    Baker, B. J. & Richardson, J. M. L. The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota. Can. J. Zool. 84, 1528–1532 (2006).

    Google Scholar 

  39. 39.

    Bedrosian, T. A., Aubrecht, T. G., Kaugars, K. E., Weil, Z. M. & Nelson, R. J. Artificial light at night alters delayed-type hypersensitivity reaction in response to acute stress in Siberian hamsters. Brain Behav. Immun. 34, 39–42 (2013).

    PubMed  Google Scholar 

  40. 40.

    Bedrosian, T. A., Fonken, L. K., Walton, J. C. & Nelson, R. J. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol. Lett. 7, 468–471 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bennie, J., Davies, T. W., Cruse, D., Bell, F. & Gaston, K. J. Artificial light at night alters grassland vegetation species composition and phenology. J. Appl. Ecol. 55, 442–450 (2018).

    Google Scholar 

  42. 42.

    Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Phil. Trans. R. Soc. B 370, 20140131 (2015).

    PubMed  Google Scholar 

  43. 43.

    Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698–2706 (2018).

    CAS  Google Scholar 

  44. 44.

    Berry, M., Booth, D. T. & Limpus, C. J. Artificial lighting and disrupted sea-finding behaviour in hatchling loggerhead turtles (Caretta caretta) on the Woongarra coast, south-east Queensland, Australia. Aust. J. Zool. 61, 137–145 (2013).

    Google Scholar 

  45. 45.

    Bird, B. L., Branch, L. C. & Miller, D. L. Effects of coastal lighting on foraging behavior of beach mice. Conserv. Biol. 18, 1435–1439 (2004).

    Google Scholar 

  46. 46.

    Bliss-Ketchum, L. L., de Rivera, C. E., Turner, B. C. & Weisbaum, D. M. The effect of artificial light on wildlife use of a passage structure. Biol. Conserv. 199, 25–28 (2016).

    Google Scholar 

  47. 47.

    Brüning, A., Hölker, F., Franke, S., Preuer, T. & Kloas, W. Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress. Sci. Total Environ. 511, 516–522 (2015).

    PubMed  Google Scholar 

  48. 48.

    Brüning, A., Kloas, W., Preuer, T. & Hölker, F. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat. Conserv. Physiol. 6, coy016 (2018).

  49. 49.

    Carazo, I., Norambuena, F., Oliveira, C., Sánchez-Vázquez, F. J. & Duncan, N. J. The effect of night illumination, red and infrared light, on locomotor activity, behaviour and melatonin of Senegalese sole (Solea senegalensis) broodstock. Physiol. Behav. 118, 201–207 (2013).

    CAS  PubMed  Google Scholar 

  50. 50.

    Cianchetti-Benedetti, M., Becciu, P., Massa, B. & Dell’Omo, G. Conflicts between touristic recreational activities and breeding shearwaters: short-term effect of artificial light and sound on chick weight. Eur. J. Wildl. Res. 64, 19 (2018).

    Google Scholar 

  51. 51.

    Cleary-Gaffney, M. & Coogan, A. N. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol. Behav. 189, 78–85 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Costin, K. J. & Boulton, A. M. A field experiment on the effect of introduced light pollution on fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland. Coleopt. Bull. 70, 84–86 (2016).

    Google Scholar 

  53. 53.

    Cravens, Z. M., Brown, V. A., Divoll, T. J. & Boyles, J. G. Illuminating prey selection in an insectivorous bat community exposed to artificial light at night. J. Appl. Ecol. 55, 705–713 (2018).

    Google Scholar 

  54. 54.

    Czarnecka, M., Kakareko, T., Jermacz, L., Pawlak, R. & Kobak, J. Combined effects of nocturnal exposure to artificial light and habitat complexity on fish foraging. Sci. Total Environ. 684, 14–22 (2019).

    CAS  PubMed  Google Scholar 

  55. 55.

    Da Silva, A., Diez-Méndez, D. & Kempenaers, B. Effects of experimental night lighting on the daily timing of winter foraging in common European songbirds. J. Avian Biol. 48, 862–871 (2017).

    Google Scholar 

  56. 56.

    Da Silva, A. & Kempenaers, B. Singing from north to south: latitudinal variation in timing of dawn singing under natural and artificial light conditions. J. Anim. Ecol. 86, 1286–1297 (2017).

    PubMed  Google Scholar 

  57. 57.

    Da Silva, A., Samplonius, J. M., Schlicht, E., Valcu, M. & Kempenaers, B. Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav. Ecol. 25, 1037–1047 (2014).

    Google Scholar 

  58. 58.

    Da Silva, A., Valcu, M. & Kempenaers, B. Behavioural plasticity in the onset of dawn song under intermittent experimental night lighting. Anim. Behav. 117, 155–165 (2016).

    Google Scholar 

  59. 59.

    Dauchy, R. T. et al. Eliminating animal facility light-at-night contamination and its effect on circadian regulation of rodent physiology, tumor growth, and metabolism: a challenge in the relocation of a cancer research laboratory. J. Am. Assoc. Lab. Anim. Sci. 50, 326–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Davies, T. W. et al. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Glob. Change Biol. 23, 2641–2648 (2017).

    Google Scholar 

  61. 61.

    Davies, T. W., Bennie, J. & Gaston, K. J. Street lighting changes the composition of invertebrate communities. Biol. Lett. 8, 764–767 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Davies, T. W., Coleman, M., Griffith, K. M. & Jenkins, S. R. Night-time lighting alters the composition of marine epifaunal communities. Biol. Lett. 11, 20150080 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    de Jong, M. et al. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Phil. Trans. R. Soc. B 370, 20140128 (2015).

    PubMed  Google Scholar 

  64. 64.

    de Jong, M. et al. Dose-dependent responses of avian daily rhythms to artificial light at night. Physiol. Behav. 155, 172–179 (2016).

    CAS  PubMed  Google Scholar 

  65. 65.

    De Medeiros, B. A. S., Barghini, A. & Vanin, S. A. Streetlights attract a broad array of beetle species. Rev. Bras. Entomol. 61, 74–79 (2017).

    Google Scholar 

  66. 66.

    Dimitriadis, C., Fournari-Konstantinidou, I., Sourbès, L., Koutsoubas, D. & Mazaris, A. D. Reduction of sea turtle population recruitment caused by nightlight: evidence from the Mediterranean region. Ocean Coast. Manag. 153, 108–115 (2018).

    Google Scholar 

  67. 67.

    Dominoni, D. M. et al. Dose-response effects of light at night on the reproductive physiology of great tits (Parus major): integrating morphological analyses with candidate gene expression. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 473–487 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Dominoni, D. M., Goymann, W., Helm, B. & Partecke, J. Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): implications of city life for biological time-keeping of songbirds. Front. Zool. 10, 60 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Dominoni, D. M., Helm, B., Lehmann, M., Dowse, H. B. & Partecke, J. Clocks for the city: circadian differences between forest and city songbirds. Proc. Biol. Sci. 280, 20130593 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Dominoni, D. M., Quetting, M. & Partecke, J. Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula). PLoS ONE 8, e85069 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Dong, Y. N., Goguen, D., Robertson, H. A. & Rusak, B. Anatomical and temporal differences in the regulation of ZIF268 (NGFI-A) protein in the hamster and mouse suprachiasmatic nucleus. Abstr. Soc. Neurosci. 111, 567–574 (2002).

    CAS  Google Scholar 

  72. 72.

    Durrant, J., Botha, L. M., Green, M. P. & Jones, T. M. Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. J. Exp. Zool. B Mol. Dev. Evol. 330, 225–233 (2018).

    PubMed  Google Scholar 

  73. 73.

    Durrant, J., Green, M. P. & Jones, T. M. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. Insect Sci. 27, 571–582 (2020).

    CAS  PubMed  Google Scholar 

  74. 74.

    Firebaugh, A. & Haynes, K. J. Light pollution may create demographic traps for nocturnal insects. Basic Appl. Ecol. 34, 118–125 (2019).

    Google Scholar 

  75. 75.

    Flowers, N. D. & Gibson, D. J. Quantified effects of artificial versus natural nighttime lighting on the Eurasian grasses Bothriochloa bladhii (Poaceae) and Bothriochloa ischaemum (Poaceae) and the North American grasses Panicum virgatum (Poaceae) and Sorghastrum nutans (Poaceae). J. Torrey Bot. Soc. 145, 147–155 (2018).

    Google Scholar 

  76. 76.

    Fobert, E. K., da Silva, K. B. & Swearer, S. E. Artificial light at night causes reproductive failure in clownfish. Biol. Lett. 15, 20190272 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Fonken, L. K., Haim, A. & Nelson, R. J. Dim light at night increases immune function in Nile grass rats, a diurnal rodent. Chronobiol. Int. 29, 26–34 (2012).

    PubMed  Google Scholar 

  78. 78.

    Fonken, L. K., Kitsmiller, E., Smale, L. & Nelson, R. J. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J. Biol. Rhythms 27, 319–327 (2012).

    PubMed  Google Scholar 

  79. 79.

    Fonken, L. K., Weil, Z. M. & Nelson, R. J. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav. Immun. 34, 159–163 (2013).

    CAS  PubMed  Google Scholar 

  80. 80.

    Foster, J. G., Algera, D. A., Brownscombe, J. W., Zolderdo, A. J. & Cooke, S. J. Consequences of different types of littoral zone light pollution on the parental care behaviour of a freshwater teleost fish. Water Air Soil Pollut. 227, 404 (2016).

    Google Scholar 

  81. 81.

    Francis, M. J., Spooner, P. & Matthews, A. The influence of urban encroachment on squirrel gliders (Petaurus norfolcensis): effects of road density, light and noise pollution. Wildl. Res. 42, 324–333 (2015).

    Google Scholar 

  82. 82.

    Frank, T. M., Gabbert, W. C., Chaves-Campos, J. & LaVal, R. K. Impact of artificial lights on foraging of insectivorous bats in a Costa Rican cloud forest. J. Trop. Ecol. 35, 8–17 (2019).

    Google Scholar 

  83. 83.

    Gastón, M. S., Pereyra, L. C. & Vaira, M. Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad. J. Exp. Zool. A Ecol. Integr. Physiol. 331, 93–102 (2019).

    PubMed  Google Scholar 

  84. 84.

    Grenis, K. & Murphy, S. M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 26, 770–776 (2019).

    PubMed  Google Scholar 

  85. 85.

    Grenis, K., Tjossem, B. & Murphy, S. M. Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. J. Insect Conserv. 19, 559–566 (2015).

    Google Scholar 

  86. 86.

    Grubisic, M. et al. Artificial light at night decreases biomass and alters community composition of benthic primary producers in a sub-alpine stream. Limnol. Oceanogr. 62, 2799–2810 (2017).

    Google Scholar 

  87. 87.

    Grubisic, M., van Grunsven, R. H. A., Manfrin, A., Monaghan, M. T. & Hölker, F. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch. Environ. Pollut. 240, 630–638 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Grunst, M. L., Raap, T., Grunst, A. S., Pinxten, R. & Eens, M. Artificial light at night does not affect telomere shortening in a developing free-living songbird: a field experiment: artificial light at night and telomere dynamics. Sci. Total Environ. 662, 266–275 (2019).

    CAS  PubMed  Google Scholar 

  89. 89.

    Henn, M., Nichols, H., Zhang, Y. & Bonner, T. H. Effect of artificial light on the drift of aquatic insects in urban central Texas streams. J. Freshw. Ecol. 29, 307–318 (2014).

    Google Scholar 

  90. 90.

    Hoffmann, J., Palme, R. & Eccard, J. A. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ. Pollut. 238, 844–851 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Hoffmann, J., Schirmer, A. & Eccard, J. A. Light pollution affects space use and interaction of two small mammal species irrespective of personality. BMC Ecol. 19, 26 (2019).

  92. 92.

    Hölker, F. et al. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Phil. Trans. R. Soc. B 370, 20140130 (2015).

    PubMed  Google Scholar 

  93. 93.

    Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739 (2010).

    CAS  PubMed  Google Scholar 

  94. 94.

    Kumar, J., Malik, S., Bhardwaj, S. K. & Rani, S. Bright light at night alters the perception of daylength in Indian weaver bird (Ploceus philippinus). J. Exp. Zool. A Ecol. Integr. Physiol. 329, 488–496 (2018).

    CAS  PubMed  Google Scholar 

  95. 95.

    Le Tallec, T., Théry, M. & Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 97, 753–760 (2016).

    Google Scholar 

  96. 96.

    Lewanzik, D. & Voigt, C. C. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 51, 388–394 (2014).

    Google Scholar 

  97. 97.

    Linley, G. D. The impact of artificial lighting on bats along native coastal vegetation. Aust. Mammal. 39, 178–184 (2018).

    Google Scholar 

  98. 98.

    Luarte, T. et al. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut. 218, 1147–1153 (2016).

    CAS  PubMed  Google Scholar 

  99. 99.

    Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).

    Google Scholar 

  100. 100.

    Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, e02550 (2019).

    Google Scholar 

  101. 101.

    Manfrin, A. et al. Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem. Oikos 127, 960–969 (2018).

    CAS  Google Scholar 

  102. 102.

    McLay, L. K., Green, M. P. & Jones, T. M. Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster. J. Insect Physiol. 100, 15–20 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    McLay, L. K., Nagarajan-Radha, V., Green, M. P. & Jones, T. M. Dim artificial light at night affects mating, reproductive output, and reactive oxygen species in Drosophila melanogaster. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 419–428 (2018).

    CAS  PubMed  Google Scholar 

  104. 104.

    McMahon, T. A., Rohr, J. R. & Bernal, X. E. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98, 1290–1299 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Miller, C. R. et al. Combined effects of night warming and light pollution on predator–prey interactions. Proc. Biol. Sci. 284, 20171195 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Miller, M. W. Apparent effects of light pollution on singing behavior of American robins. Condor 108, 130–139 (2006).

    Google Scholar 

  107. 107.

    Minnaar, C., Boyles, J. G., Minnaar, I. A., Sole, C. L. & McKechnie, A. E. Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 52, 552–531 (2015).

    Google Scholar 

  108. 108.

    Moore, A. F. & Menaker, M. The effect of light on melatonin secretion in the cultured pineal glands of Anolis lizards. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 301–308 (2011).

    CAS  PubMed  Google Scholar 

  109. 109.

    Navarro-Barranco, C. & Hughes, L. E. Effects of light pollution on the emergent fauna of shallow marine ecosystems: amphipods as a case study. Mar. Pollut. Bull. 94, 235–240 (2015).

    CAS  PubMed  Google Scholar 

  110. 110.

    Owens, A. C. S., Meyer-Rochow, V. B. & Yang, E. C. Short- and mid-wavelength artificial light influences the flash signals of Aquatica ficta fireflies (Coleoptera: Lampyridae). PLoS ONE 13, e0191576 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Pendoley, K. & Kamrowski, R. L. Sea-finding in marine turtle hatchlings: what is an appropriate exclusion zone to limit disruptive impacts of industrial light at night? J. Nat. Conserv. 30, 1–11 (2016).

    Google Scholar 

  112. 112.

    Perkin, E. K., Hölker, F., Tockner, K. & Richardson, J. S. Artificial light as a disturbance to light-naïve streams. Freshw. Biol. 59, 2235–2244 (2014).

    Google Scholar 

  113. 113.

    Polak, T., Korine, C., Yair, S. & Holderied, M. W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 285, 21–27 (2011).

    Google Scholar 

  114. 114.

    Pulgar, J. et al. Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN). Environ. Pollut. 244, 361–366 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Raap, T. et al. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study. Sci. Rep. 6, 35626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Raap, T., Casasole, G., Pinxten, R. & Eens, M. Early life exposure to artificial light at night affects the physiological condition: an experimental study on the ecophysiology of free-living nestling songbirds. Environ. Pollut. 218, 909–914 (2016).

    CAS  PubMed  Google Scholar 

  117. 117.

    Raap, T., Sun, J., Pinxten, R. & Eens, M. Disruptive effects of light pollution on sleep in free-living birds: season and/or light intensity-dependent? Behav. Processes 144, 13–19 (2017).

    PubMed  Google Scholar 

  118. 118.

    Rapatsa, M. M. & Moyo, N. A. G. The potential role of night-time lighting in attracting terrestrial insects as food for Oreochromis mossambicus and Clarias gariepinus. Trop. Zool. 30, 156–169 (2017).

    Google Scholar 

  119. 119.

    Reiter, R. J. et al. The pineal melatonin rhythm and its regulation by light in a subterranean rodent, the valley pocket gopher (Thomomys bottae). J. Pineal Res. 16, 145–153 (1994).

    CAS  PubMed  Google Scholar 

  120. 120.

    Robert, K. A., Lesku, J. A., Partecke, J. & Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. Biol. Sci. 282, 20151745 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Robertson, K., Booth, D. T. & Limpus, C. J. An assessment of ‘turtle-friendly’ lights on the sea-finding behaviour of loggerhead turtle hatchlings (Caretta caretta). Wildl. Res. 43, 27–37 (2016).

    Google Scholar 

  122. 122.

    Rotics, S., Dayan, T. & Kronfeld-Schor, N. Effect of artificial night lighting on temporally partitioned spiny mice. J. Mammal. 92, 159–168 (2011).

    Google Scholar 

  123. 123.

    Russo, D. et al. Adverse effects of artificial illumination on bat drinking activity. Anim. Conserv. 20, 492–501 (2017).

    Google Scholar 

  124. 124.

    Rydell, J., Eklöf, J. & Sánchez-Navarro, S. Age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches. R. Soc. Open Sci. 4, 161077 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Sanders, D. et al. Artificial nighttime light changes aphid-parasitoid population dynamics. Sci. Rep. 5, 15232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Santos, C. D. et al. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecol. 36, 166–172 (2010).

    Google Scholar 

  127. 127.

    Schoech, S. J. et al. The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica). J. Exp. Zool. A Ecol. Genet. Physiol. 319, 527–538 (2013).

    CAS  PubMed  Google Scholar 

  128. 128.

    Schoeman, M. C. Light pollution at stadiums favors urban exploiter bats. Anim. Conserv. 19, 120–130 (2016).

    Google Scholar 

  129. 129.

    Silva, E. et al. Light pollution affects nesting behavior of loggerhead turtles and predation risk of nests and hatchlings. J. Photochem. Photobiol. B 173, 240–249 (2017).

    CAS  PubMed  Google Scholar 

  130. 130.

    Simões, T. N., da Silva, A. C. & Carneiro de Melo Moura, C. Influence of artificial lights on the orientation of hatchlings of Eretmochelys imbricata in Pernambuco, Brazil. Zoologia (Curitiba) 34, e13727 (2017).

    Google Scholar 

  131. 131.

    Spoelstra, K., Ramakers, J. J. C., van Dis, N. E. & Visser, M. E. No effect of artificial light of different colors on commuting Daubenton’s bats (Myotis daubentonii) in a choice experiment. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 506–510 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Spoelstra, K. et al. Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light. Proc. Biol. Sci. 284, 20170075 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Sun, J., Raap, T., Pinxten, R. & Eens, M. Artificial light at night affects sleep behaviour differently in two closely related songbird species. Environ. Pollut. 231, 882–889 (2017).

    CAS  PubMed  Google Scholar 

  134. 134.

    Szekeres, P. et al. Does coastal light pollution alter the nocturnal behavior and blood physiology of juvenile bonefish (Albula vulpes)? Bull. Mar. Sci. 93, 491–505 (2017).

    Google Scholar 

  135. 135.

    Tałanda, J., Maszczyk, P. & Babkiewicz, E. The reaction distance of a planktivorous fish (Scardinius erythrophthalmus) and the evasiveness of its prey (Daphnia pulex × pulicaria) under different artificial light spectra. Limnology 19, 311–319 (2018).

    Google Scholar 

  136. 136.

    Taufique, S. K. T., Prabhat, A. & Kumar, V. Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. Eur. J. Neurosci. 48, 3005–3018 (2018).

    PubMed  Google Scholar 

  137. 137.

    Thomas, J. R. et al. The impact of streetlights on an aquatic invasive species: artificial light at night alters signal crayfish behaviour. Appl. Anim. Behav. Sci. 176, 143–149 (2016).

    Google Scholar 

  138. 138.

    Ulgezen, Z. N. et al. The preference and costs of sleeping under light at night in forest and urban great tits. Proc. Biol. Sci. 286, 20190872 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Underwood, C. N., Davies, T. W. & Queirós, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).

    PubMed  Google Scholar 

  140. 140.

    van Geffen, K. G. et al. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 40, 401–408 (2015).

    Google Scholar 

  141. 141.

    van Geffen, K. G. et al. Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv. Divers. 8, 282–287 (2015).

    Google Scholar 

  142. 142.

    van Langevelde, F., van Grunsven, R. H. A., Veenendaal, E. M. & Fijen, T. P. M. Artificial night lighting inhibits feeding in moths. Biol. Lett. 13, 20160874 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Vollrath, L. & Huesgen, A. Response of pineal serotonin N-acetyltransferase activity in male guinea pigs exposed to light pulses at night. J. Neural Transm. 72, 55–66 (1988).

    CAS  PubMed  Google Scholar 

  144. 144.

    Wakefield, A., Broyles, M., Stone, E. L., Harris, S. & Jones, G. Quantifying the attractiveness of broad-spectrum street lights to aerial nocturnal insects. J. Appl. Ecol. 55, 714–722 (2018).

    CAS  Google Scholar 

  145. 145.

    Wang, W. et al. Effects of supplemental lighting with different light qualities on growth and secondary metabolite content of Anoectochilus roxburghii. PeerJ. 6, e5274 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Watson, M. J., Wilson, D. R. & Mennill, D. J. Anthropogenic light is associated with increased vocal activity by nocturnally migrating birds. Condor 118, 338–344 (2016).

    Google Scholar 

  147. 147.

    Willmott, N. J., Henneken, J., Elgar, M. A. & Jones, T. M. Guiding lights: foraging responses of juvenile nocturnal orb-web spiders to the presence of artificial light at night. Ethology 125, 289–287 (2019).

    Google Scholar 

  148. 148.

    Willmott, N. J., Henneken, J., Selleck, C. J. & Jones, T. M. Artificial light at night alters life history in a nocturnal orb-web spider. PeerJ. 6, e5599 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Yuen, S. W. & Bonebrake, T. C. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders. PeerJ. 5, e4070 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Zeale, M. R. K. et al. Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats. Glob. Change Biol. 24, 5909–5918 (2018).

    Google Scholar 

  151. 151.

    Zhang, S., Chen, X., Zhang, J. & Li, H. Differences in the reproductive hormone rhythm of tree sparrows (Passer montanus) from urban and rural sites in Beijing: the effect of anthropogenic light sources. Gen. Comp. Endocrinol. 206, 24–29 (2014).

    CAS  PubMed  Google Scholar 

  152. 152.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  153. 153.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  154. 154.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  PubMed  Google Scholar 

  155. 155.

    Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2006).

  156. 156.

    Simonsohn, U., Nelson, L. D. & Simmons, J. P. P-curve: a key to the file-drawer. J. Exp. Psychol. Gen. 143, 534–547 (2014).

    PubMed  Google Scholar 

  157. 157.

    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Google Scholar 

  158. 158.

    Simonsohn, U., Nelson, L. D. & Simmons, J. P. P-curve and effect size: correcting for publication bias using only significant results. Perspect. Psychol. Sci. 9, 666–681 (2014).

    PubMed  Google Scholar 

  159. 159.

    Harrer, M., Cuijpers, P., Furukawa, T. & Ebert, D. D. Dmetar: Companion R Package for the Guide ‘Doing Meta-Analysis in R’; http://dmetar.protectlab.org

  160. 160.

    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A. A Meta-Analysis of Biological Impacts of Artificial Light at Night, v.4, Dryad, Dataset (Dryad, 2020); https://doi.org/10.5061/dryad.wpzgmsbjn

Download references

Acknowledgements

We thank A. Sánchez-Tójar, B. W. T. Coetzee and D. T. C. Cox for comments and discussions, and A. Voronkova for translations. This work was supported by a Natural Environment Research Council grant no. NE/N001672/1.

Author information

Affiliations

Authors

Contributions

K.J.G. conceived the study. K.J.G. and D.S. designed the study. D.S., R.K. and C.P. extracted the data. E.F. and D.S. analysed the data. D.S., E.F., R.K. and K.J.G. prepared the manuscript.

Corresponding author

Correspondence to Kevin J. Gaston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanders, D., Frago, E., Kehoe, R. et al. A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 5, 74–81 (2021). https://doi.org/10.1038/s41559-020-01322-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing