Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour


Genetic interactions such as epistasis are widespread in nature and can shape evolutionary dynamics. Epistasis occurs due to nonlinearity in biological systems, which can arise via cellular processes that convert genotype to phenotype and via selective processes that connect phenotype to fitness. Few studies in nature have connected genotype to phenotype to fitness for multiple potentially interacting genetic variants. Thus, the causes of epistasis in the wild remain poorly understood. Here, we show that epistasis for fitness is an emergent and predictable property of nonlinear selective processes. We do so by measuring the genetic basis of cryptic colouration and survival in a field experiment with stick insects. We find that colouration shows a largely additive genetic basis but with some effects of epistasis that enhance differentiation between colour morphs. In terms of fitness, different combinations of loci affecting colouration confer high survival in one host-plant treatment. Specifically, nonlinear correlational selection for specific combinations of colour traits in this treatment drives the emergence of pairwise and higher-order epistasis for fitness at loci underlying colour. In turn, this results in a rugged fitness landscape for genotypes. In contrast, fitness epistasis was dampened in another treatment, where selection was weaker. Patterns of epistasis that are shaped by ecologically based selection could be common and central to understanding fitness landscapes, the dynamics of evolution and potentially other complex systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of the hypotheses examined.
Fig. 2: Objectively quantifying colour variation from digital photographs.
Fig. 3: Genetics of cryptic colouration in T. chumash.
Fig. 4: Phenotypic selection on colouration in a field experiment.
Fig. 5: Evidence of epistasis for fitness and the fitness landscape.

Data availability

DNA sequences have been deposited in the NCBI SRA (BioProject PRJNA656892). Other data, including colour measurements and results from the experiment, have been archived in Dryad Digital Repository ( Correspondence and requests for materials should be sent to P.N.

Code availability

Core scripts have been archived in Dryad Digital Repository (


  1. 1.

    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    CAS  PubMed  Google Scholar 

  4. 4.

    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Gratten, J. et al. A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319, 318–320 (2008).

    CAS  PubMed  Google Scholar 

  6. 6.

    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Coberly, L. C. & Rausher, M. D. Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea. Evolution 62, 1076–1085 (2008).

    PubMed  Google Scholar 

  8. 8.

    Korves, T. M., others. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am. Nat. 169, 141–157 (2007).

    Google Scholar 

  9. 9.

    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).

    PubMed  Google Scholar 

  10. 10.

    de Visser, J. C. F. T. & Elena, S. F. The causes of epistasis. Proc. R. Soc. B 278, 3617–3624 (2011).

    PubMed  Google Scholar 

  11. 11.

    Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Natarajan, C. et al. Epistasis among adaptive mutations in deer mouse hemoglobin. Science 340, 1324–1327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).

    CAS  PubMed  Google Scholar 

  17. 17.

    Orr, H. A. The population genetics of speciation— the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    CAS  PubMed  Google Scholar 

  19. 19.

    Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Wilfert, L. & Schmid-Hempel, P. The genetic architecture of susceptibility to parasites. BMC Evol. Biol. 8, 187 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS  PubMed  Google Scholar 

  22. 22.

    Gavrilets, S. Fitness Landscapes and the Origin of Species (Princeton Univ. Press, 2004);

  23. 23.

    Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth Int. Congr. Genet. 1, 356–366 (1932).

    Google Scholar 

  24. 24.

    Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27, 323–331 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Whitlock, M. C., Phillips, P. C., Moore, F. B. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).

    Google Scholar 

  26. 26.

    Whitlock, M. C. Founder effects and peak shifts without genetic drift: adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51, 1044–1048 (1997).

    PubMed  Google Scholar 

  27. 27.

    Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).

    CAS  PubMed  Google Scholar 

  29. 29.

    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    CAS  PubMed  Google Scholar 

  30. 30.

    Plucain, J. et al. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sandoval, C. P. Differential visual predation on morphs of Timema cristinae (Phasmatodeae:Timemidae) and its consequences for host range. Biol. J. Linn. Soc. 52, 341–356 (1994).

    Google Scholar 

  33. 33.

    Sandoval, C. P. The effects of the relative geographic scales of gene flow and selection on morph frequencies in the walking‐stick Timema cristinae. Evolution 48, 1866–1879 (1994).

    PubMed  Google Scholar 

  34. 34.

    Sandoval, C. P. & Nosil, P. Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks. Evolution 59, 2405–2413 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Comeault, A. A. et al. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 25, 1975–1981 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Villoutreix, R. et al. Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science 369, 460–466 (2020).

    CAS  PubMed  Google Scholar 

  38. 38.

    Lindtke, D. et al. Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol. Ecol. 26, 6189–6205 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Endler, J. A. A framework for analysing colour pattern geometry: adjacent colours. Biol. J. Linn. Soc. 107, 233–253 (2012).

    Google Scholar 

  40. 40.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Google Scholar 

  41. 41.

    Hurvich, L. M. Color Vision (Sinauer Associates, 1981).

  42. 42.

    Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).

    PubMed  Google Scholar 

  43. 43.

    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Crawford, L., Zeng, P., Mukherjee, S. & Zhou, X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 13, e1006869 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Comeault, A. A., Ferreira, C., Dennis, S., Soria-Carrasco, V. & Nosil, P. Color phenotypes are under similar genetic control in two distantly related species of Timema stick insect. Evolution 70, 1283–1296 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    Nosil, P. & Crespi, B. J. Experimental evidence that predation promotes divergence in adaptive radiation. Proc. Natl Acad. Sci. USA 103, 9090–9095 (2006).

    CAS  PubMed  Google Scholar 

  47. 47.

    Rennison, D. J., Heilbron, K., Barrett, R. D. H. & Schluter, D. Discriminating selection on lateral plate phenotype and its underlying gene, ectodysplasin, in threespine stickleback. Am. Nat. 185, 150–156 (2015).

    PubMed  Google Scholar 

  48. 48.

    Wright, S. The shifting balance theory and macroevolution. Annu. Rev. Genet. 16, 1–19 (1982).

    CAS  PubMed  Google Scholar 

  49. 49.

    Coyne, J. A., Barton, N. H. & Turelli, M. Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    PubMed  Google Scholar 

  50. 50.

    Wade, M. J. & Goodnight, C. J. Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52, 1537–1553 (1998).

    PubMed  Google Scholar 

  51. 51.

    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).

    Google Scholar 

  52. 52.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  53. 53.

    Sackman, A. M. & Rokyta, D. R. Additive phenotypes underlie epistasis of fitness effects. Genetics 208, 339–348 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Knief, U. et al. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat. Ecol. Evol. 3, 570–576 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).

    PubMed  Google Scholar 

  56. 56.

    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

  57. 57.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  58. 58.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  59. 59.

    Parchman, T. L. et al. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).

    CAS  PubMed  Google Scholar 

  60. 60.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

  61. 61.

    Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).

    CAS  PubMed  Google Scholar 

  62. 62.

    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815 (2011).

    Google Scholar 

  63. 63.

    Nosil, P. Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R. Soc. B 271, 1521–1528 (2004).

    PubMed  Google Scholar 

  64. 64.

    Nosil, P. et al. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 279, 5058–5065 (2012).

    PubMed  Google Scholar 

  65. 65.

    Sandoval, C. P. Persistence of a walking-stick population (Phasmatoptera: Timematodea) after a wildfire. Southwest. Nat. 45, 123–127 (2000).

    Google Scholar 

  66. 66.

    Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-8 (2018).

  67. 67.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  68. 68.

    Janzen, F. J. & Stern, H. S. Logistic regression for empirical studies of multivariate selection. Evolution 52, 1564–1571 (1998).

    PubMed  Google Scholar 

  69. 69.

    Zeugner, S. & Feldkircher, M. Bayesian model averaging employing fixed and flexible priors: the BMS package for R. J. Stat. Softw. 68, 1–37 (2015).

    Google Scholar 

  70. 70.

    Zellner, A. in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (eds Goel, P. & Zellner, A.) 233–243 (1986).

  71. 71.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  72. 72.

    Weinberger, E. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990).

    Google Scholar 

  73. 73.

    Vassilev, V. K., Fogarty, T. C. & Miller, J. F. Information characteristics and the structure of landscapes. Evol. Comput. 8, 31–60 (2000).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kouyos, R. D. et al. Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet. 8, e1002551–e1002551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Malan, K. M. & Engelbrecht, A. P. A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013).

    Google Scholar 

  76. 76.

    Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. Trends Genet. 31, 24–33 (2015).

    CAS  PubMed  Google Scholar 

  77. 77.

    Poursoltan, S. & Neumann, F. in Evolutionary Constrained Optimization (eds Datta, R. & Deb, K.) 29–50 (Springer, 2015);

  78. 78.

    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

    CAS  PubMed  Google Scholar 

  80. 80.

    Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).

    Google Scholar 

Download references


We thank T. Reimchen, M. Joron, L.-M. Chevin and D. Ayala for discussion and comments on previous versions of the manuscript, M. Muschick for help with photography and reflectance measurements and T. Oakley for laboratory space. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged, as well as access to the High Performance Computing Facilities, particularly to the Iceberg and ShARC HPC clusters, from the Corporate Information and Computing Services at the University of Sheffield. The work was funded by a grant from the European Research Council (grant no. EE-Dynamics 770826, and a grant from the National Science Foundation of the United States (grant no. NSF DEB 1638768). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




All authors conceived the project and contributed to writing. R.V., C.F.C., T.L.P. and P.N. collected data. Z.G. led data analysis, aided by all authors.

Corresponding author

Correspondence to Patrik Nosil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3, Figs. 1–10 and references.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosil, P., Villoutreix, R., de Carvalho, C.F. et al. Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour. Nat Ecol Evol (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing