Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to ecosystem models and their environmental applications

Abstract

Applied ecology has traditionally approached management problems through a simplified, single-species lens. Repeated failures of single-species management have led us to a new paradigm — managing at the ecosystem level. Ecosystem management involves a complex array of interacting organisms, processes and scientific disciplines. Accounting for interactions, feedback loops and dependencies between ecosystem components is therefore fundamental to understanding and managing ecosystems. We provide an overview of the main types of ecosystem models and their uses, and discuss challenges related to modelling complex ecological systems. Existing modelling approaches typically attempt to do one or more of the following: describe and disentangle ecosystem components and interactions; make predictions about future ecosystem states; and inform decision making by comparing alternative strategies and identifying important uncertainties. Modelling ecosystems is challenging, particularly when balancing the desire to represent many components of an ecosystem with the limitations of available data and the modelling objective. Explicitly considering different forms of uncertainty is therefore a primary concern. We provide some recommended strategies (such as ensemble ecosystem models and multi-model approaches) to aid the explicit consideration of uncertainty while also meeting the challenges of modelling ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ecosystem modelling methods and their frequency of use for specific purposes.
Fig. 2: Varying levels of ecosystem model complexity.

Similar content being viewed by others

References

  1. Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).

    Article  Google Scholar 

  2. Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).

    Article  Google Scholar 

  3. Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).

  4. Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).

    Article  CAS  Google Scholar 

  5. Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).

    Article  Google Scholar 

  6. DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article  CAS  Google Scholar 

  7. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).

    Article  CAS  Google Scholar 

  8. Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).

    Article  Google Scholar 

  9. Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).

  10. Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    Article  Google Scholar 

  11. Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).

    Article  CAS  Google Scholar 

  12. Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).

    Article  Google Scholar 

  13. Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).

    Article  Google Scholar 

  14. Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).

    Article  Google Scholar 

  15. Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).

    Article  Google Scholar 

  16. Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).

    Article  Google Scholar 

  17. Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).

  18. Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).

    Article  CAS  Google Scholar 

  19. Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).

    Article  Google Scholar 

  20. Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).

    Article  Google Scholar 

  21. Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).

    Article  Google Scholar 

  22. Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).

    Article  Google Scholar 

  23. Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).

    Article  Google Scholar 

  24. Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).

    Article  Google Scholar 

  25. Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).

    Article  Google Scholar 

  26. Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).

    Article  CAS  Google Scholar 

  27. Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).

    Google Scholar 

  28. Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Article  Google Scholar 

  29. Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  30. Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).

    Article  Google Scholar 

  31. Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).

    Article  Google Scholar 

  32. Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).

    Article  Google Scholar 

  33. Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).

    Article  CAS  Google Scholar 

  34. McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    Article  CAS  Google Scholar 

  35. Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    Article  CAS  Google Scholar 

  36. Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).

    Article  Google Scholar 

  37. Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).

    Article  CAS  Google Scholar 

  38. McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).

    Article  Google Scholar 

  39. Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).

    Article  Google Scholar 

  40. Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).

    Article  CAS  Google Scholar 

  41. Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).

    Article  Google Scholar 

  42. Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).

    Article  Google Scholar 

  43. Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).

    Article  Google Scholar 

  44. Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).

    Article  CAS  Google Scholar 

  45. Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Article  Google Scholar 

  46. Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).

    Article  Google Scholar 

  47. Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).

  48. Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).

    Article  Google Scholar 

  49. Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).

    Google Scholar 

  50. García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).

    Article  Google Scholar 

  51. Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).

  52. Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).

  53. Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).

    Article  CAS  Google Scholar 

  54. Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).

  55. Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).

    Article  Google Scholar 

  56. Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).

    Article  Google Scholar 

  57. Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).

    Article  Google Scholar 

  58. Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).

    Article  Google Scholar 

  59. Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).

    Article  Google Scholar 

  60. Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).

    Article  CAS  Google Scholar 

  61. Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).

    Article  Google Scholar 

  62. Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).

    Article  CAS  Google Scholar 

  63. Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).

    Article  Google Scholar 

  64. Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).

    Article  Google Scholar 

  65. Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).

    Article  CAS  Google Scholar 

  66. Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).

    Article  Google Scholar 

  67. Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).

    Article  CAS  Google Scholar 

  68. Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).

    Article  Google Scholar 

  69. McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).

    Article  Google Scholar 

  70. Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).

  71. Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).

    Article  CAS  Google Scholar 

  72. Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).

    Article  Google Scholar 

  73. Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Article  Google Scholar 

  74. Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).

    Article  Google Scholar 

  75. Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).

    Article  Google Scholar 

  76. Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).

    Article  Google Scholar 

  77. Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).

    Article  Google Scholar 

  78. Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).

    Article  Google Scholar 

  79. Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).

    Article  Google Scholar 

  80. Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Article  Google Scholar 

  81. Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).

    Article  Google Scholar 

  82. Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).

  83. Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).

    Article  Google Scholar 

  84. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  85. Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).

  86. Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

    Article  Google Scholar 

  87. Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).

    Article  Google Scholar 

  88. Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).

    Article  Google Scholar 

  89. Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).

  90. Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).

    Article  Google Scholar 

  91. Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).

    Article  Google Scholar 

  92. Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).

    Article  Google Scholar 

  93. Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).

    Article  Google Scholar 

  94. Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).

    Article  Google Scholar 

  95. Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).

    Article  Google Scholar 

  96. Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).

  97. Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).

    Article  Google Scholar 

  98. Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).

    Article  Google Scholar 

  99. Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).

    Article  Google Scholar 

  100. Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).

    Article  Google Scholar 

  101. Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Article  Google Scholar 

  102. Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).

    Article  Google Scholar 

  103. Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).

    Article  Google Scholar 

  104. Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).

    Article  Google Scholar 

  105. Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    Article  CAS  Google Scholar 

  106. Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).

    Article  Google Scholar 

  107. Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).

    Article  Google Scholar 

  108. Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).

    Article  Google Scholar 

  109. Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).

    Article  Google Scholar 

  110. Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).

    Article  Google Scholar 

  111. Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).

    Article  Google Scholar 

  112. Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).

    Article  Google Scholar 

  113. Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).

    Article  Google Scholar 

  114. Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).

    Article  Google Scholar 

  115. Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).

    Article  Google Scholar 

  116. Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).

    Article  Google Scholar 

  117. Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).

    Article  CAS  Google Scholar 

  118. Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).

  119. Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).

    Article  CAS  Google Scholar 

  120. de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

    Article  Google Scholar 

  121. Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).

    Article  Google Scholar 

  122. Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).

    Article  Google Scholar 

  123. Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).

    Article  Google Scholar 

  124. Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Article  Google Scholar 

  125. Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).

    Article  CAS  Google Scholar 

  126. Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).

    Article  Google Scholar 

  127. Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).

    Article  Google Scholar 

  128. McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).

    Article  Google Scholar 

  129. Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).

    Article  Google Scholar 

  130. Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).

    Article  Google Scholar 

  131. Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).

    Article  Google Scholar 

  132. Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).

    Article  Google Scholar 

  133. Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).

    Article  Google Scholar 

  134. Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).

    Article  Google Scholar 

  135. Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).

    Article  Google Scholar 

  136. Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).

    Article  Google Scholar 

  137. Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).

    Article  Google Scholar 

  138. Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).

    Article  Google Scholar 

  139. Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).

  140. Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).

    Article  Google Scholar 

  141. Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).

    CAS  Google Scholar 

  142. Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).

    Article  Google Scholar 

  143. Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).

    Article  Google Scholar 

  144. Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

W.L.G. was supported by the Department of Environment, Land, Water and Planning Victoria, and by Parks Victoria. T.S.D. was supported by an Alfred Deakin Post-doctoral Research Fellowship. D.G.N. was supported by an Australian Research Council Discovery Early Career Researcher Award. A.I.T.T. was supported by an Australian Research Council Discovery Early Career Researcher Award. Silhouettes used in the Box 1 and 2 figures are taken from Phylopic.

Author information

Authors and Affiliations

Authors

Contributions

W.L.G. and E.G.R. conceived the ideas for the paper. W.L.G. led the writing. V.J.D.T. wrote Box 2. M.B. constructed and ran the model for Box 3. W.L.G., M.B., T.S.D., E.A.F., D.G.N., A.I.T.T., V.J.D.T. and E.G.R. all contributed to developing schematics and writing the paper.

Corresponding author

Correspondence to William L. Geary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information 1, Supplementary Table 1, Supplementary Information 2, Supplementary Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geary, W.L., Bode, M., Doherty, T.S. et al. A guide to ecosystem models and their environmental applications. Nat Ecol Evol 4, 1459–1471 (2020). https://doi.org/10.1038/s41559-020-01298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01298-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing