A guide to ecosystem models and their environmental applications


Applied ecology has traditionally approached management problems through a simplified, single-species lens. Repeated failures of single-species management have led us to a new paradigm — managing at the ecosystem level. Ecosystem management involves a complex array of interacting organisms, processes and scientific disciplines. Accounting for interactions, feedback loops and dependencies between ecosystem components is therefore fundamental to understanding and managing ecosystems. We provide an overview of the main types of ecosystem models and their uses, and discuss challenges related to modelling complex ecological systems. Existing modelling approaches typically attempt to do one or more of the following: describe and disentangle ecosystem components and interactions; make predictions about future ecosystem states; and inform decision making by comparing alternative strategies and identifying important uncertainties. Modelling ecosystems is challenging, particularly when balancing the desire to represent many components of an ecosystem with the limitations of available data and the modelling objective. Explicitly considering different forms of uncertainty is therefore a primary concern. We provide some recommended strategies (such as ensemble ecosystem models and multi-model approaches) to aid the explicit consideration of uncertainty while also meeting the challenges of modelling ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ecosystem modelling methods and their frequency of use for specific purposes.
Fig. 2: Varying levels of ecosystem model complexity.


  1. 1.

    Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).

    Google Scholar 

  2. 2.

    Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).

    Google Scholar 

  3. 3.

    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).

  4. 4.

    Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).

    CAS  Google Scholar 

  5. 5.

    Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).

    Google Scholar 

  6. 6.

    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  Google Scholar 

  7. 7.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).

    CAS  Google Scholar 

  8. 8.

    Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).

    Google Scholar 

  9. 9.

    Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).

  10. 10.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    Google Scholar 

  11. 11.

    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).

    Google Scholar 

  13. 13.

    Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).

    Google Scholar 

  14. 14.

    Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).

    Google Scholar 

  15. 15.

    Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).

    Google Scholar 

  16. 16.

    Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).

    Google Scholar 

  17. 17.

    Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).

  18. 18.

    Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).

    CAS  Google Scholar 

  19. 19.

    Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).

    Google Scholar 

  20. 20.

    Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).

    PubMed Central  PubMed  Google Scholar 

  21. 21.

    Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).

    Google Scholar 

  22. 22.

    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).

    Google Scholar 

  23. 23.

    Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).

    Google Scholar 

  24. 24.

    Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).

    Google Scholar 

  25. 25.

    Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).

    Google Scholar 

  26. 26.

    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).

    Google Scholar 

  27. 27.

    Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).

    Google Scholar 

  28. 28.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Google Scholar 

  29. 29.

    Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  30. 30.

    Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).

    Google Scholar 

  31. 31.

    Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).

    Google Scholar 

  32. 32.

    Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).

    Google Scholar 

  33. 33.

    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    PubMed Central  PubMed  Google Scholar 

  36. 36.

    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).

    Google Scholar 

  37. 37.

    Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).

    CAS  Google Scholar 

  38. 38.

    McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).

    Google Scholar 

  39. 39.

    Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).

    Google Scholar 

  40. 40.

    Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).

    CAS  Google Scholar 

  41. 41.

    Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).

    PubMed  Google Scholar 

  42. 42.

    Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).

    Google Scholar 

  43. 43.

    Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).

    Google Scholar 

  44. 44.

    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).

    PubMed Central  PubMed  Google Scholar 

  45. 45.

    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Google Scholar 

  46. 46.

    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).

    Google Scholar 

  47. 47.

    Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).

  48. 48.

    Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).

    Google Scholar 

  49. 49.

    Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).

    Google Scholar 

  50. 50.

    García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).

    PubMed Central  PubMed  Google Scholar 

  51. 51.

    Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).

  52. 52.

    Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).

  53. 53.

    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).

    CAS  Google Scholar 

  54. 54.

    Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).

  55. 55.

    Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).

    Google Scholar 

  56. 56.

    Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).

    Google Scholar 

  57. 57.

    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).

    Google Scholar 

  58. 58.

    Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).

    Google Scholar 

  59. 59.

    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).

    Google Scholar 

  60. 60.

    Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).

    CAS  Google Scholar 

  61. 61.

    Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).

    Google Scholar 

  62. 62.

    Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).

    CAS  Google Scholar 

  63. 63.

    Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).

    Google Scholar 

  64. 64.

    Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).

    Google Scholar 

  65. 65.

    Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).

    CAS  Google Scholar 

  66. 66.

    Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).

    Google Scholar 

  67. 67.

    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).

    CAS  Google Scholar 

  68. 68.

    Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).

    Google Scholar 

  69. 69.

    McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).

    Google Scholar 

  70. 70.

    Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).

  71. 71.

    Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).

    CAS  Google Scholar 

  72. 72.

    Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).

    Google Scholar 

  73. 73.

    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Google Scholar 

  74. 74.

    Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).

    Google Scholar 

  75. 75.

    Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).

    Google Scholar 

  76. 76.

    Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).

    Google Scholar 

  77. 77.

    Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).

    Google Scholar 

  78. 78.

    Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).

    Google Scholar 

  79. 79.

    Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).

    Google Scholar 

  80. 80.

    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Google Scholar 

  81. 81.

    Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).

    Google Scholar 

  82. 82.

    Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).

  83. 83.

    Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).

    Google Scholar 

  84. 84.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  85. 85.

    Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).

  86. 86.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

    Google Scholar 

  87. 87.

    Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).

    Google Scholar 

  88. 88.

    Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).

    Google Scholar 

  89. 89.

    Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).

  90. 90.

    Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).

    Google Scholar 

  91. 91.

    Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).

    Google Scholar 

  92. 92.

    Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).

    Google Scholar 

  93. 93.

    Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).

    Google Scholar 

  94. 94.

    Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).

    Google Scholar 

  95. 95.

    Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).

    Google Scholar 

  96. 96.

    Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).

  97. 97.

    Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).

    Google Scholar 

  98. 98.

    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).

    Google Scholar 

  99. 99.

    Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).

    Google Scholar 

  100. 100.

    Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).

    Google Scholar 

  101. 101.

    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Google Scholar 

  102. 102.

    Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).

    Google Scholar 

  103. 103.

    Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).

    Google Scholar 

  104. 104.

    Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).

    PubMed Central  PubMed  Google Scholar 

  105. 105.

    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    CAS  Google Scholar 

  106. 106.

    Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).

    Google Scholar 

  107. 107.

    Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).

    Google Scholar 

  108. 108.

    Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).

    Google Scholar 

  109. 109.

    Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).

    Google Scholar 

  110. 110.

    Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).

    Google Scholar 

  111. 111.

    Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).

    Google Scholar 

  112. 112.

    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).

    Google Scholar 

  113. 113.

    Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).

    Google Scholar 

  114. 114.

    Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).

    Google Scholar 

  115. 115.

    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).

    Google Scholar 

  116. 116.

    Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).

    Google Scholar 

  117. 117.

    Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).

    PubMed Central  PubMed  Google Scholar 

  118. 118.

    Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).

  119. 119.

    Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).

    CAS  Google Scholar 

  120. 120.

    de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

    Google Scholar 

  121. 121.

    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).

    Google Scholar 

  122. 122.

    Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).

    Google Scholar 

  123. 123.

    Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).

    Google Scholar 

  124. 124.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Google Scholar 

  125. 125.

    Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).

    PubMed Central  PubMed  Google Scholar 

  126. 126.

    Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).

    Google Scholar 

  127. 127.

    Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).

    Google Scholar 

  128. 128.

    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).

    Google Scholar 

  129. 129.

    Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).

    Google Scholar 

  130. 130.

    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).

    Google Scholar 

  131. 131.

    Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).

    Google Scholar 

  132. 132.

    Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).

    Google Scholar 

  133. 133.

    Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).

    Google Scholar 

  134. 134.

    Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).

    Google Scholar 

  135. 135.

    Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).

    Google Scholar 

  136. 136.

    Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).

    Google Scholar 

  137. 137.

    Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).

    Google Scholar 

  138. 138.

    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).

    Google Scholar 

  139. 139.

    Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).

  140. 140.

    Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).

    Google Scholar 

  141. 141.

    Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).

    CAS  PubMed  Google Scholar 

  142. 142.

    Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).

    Google Scholar 

  143. 143.

    Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).

    Google Scholar 

  144. 144.

    Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).

    Google Scholar 

Download references


W.L.G. was supported by the Department of Environment, Land, Water and Planning Victoria, and by Parks Victoria. T.S.D. was supported by an Alfred Deakin Post-doctoral Research Fellowship. D.G.N. was supported by an Australian Research Council Discovery Early Career Researcher Award. A.I.T.T. was supported by an Australian Research Council Discovery Early Career Researcher Award. Silhouettes used in the Box 1 and 2 figures are taken from Phylopic.

Author information




W.L.G. and E.G.R. conceived the ideas for the paper. W.L.G. led the writing. V.J.D.T. wrote Box 2. M.B. constructed and ran the model for Box 3. W.L.G., M.B., T.S.D., E.A.F., D.G.N., A.I.T.T., V.J.D.T. and E.G.R. all contributed to developing schematics and writing the paper.

Corresponding author

Correspondence to William L. Geary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information 1, Supplementary Table 1, Supplementary Information 2, Supplementary Table 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geary, W.L., Bode, M., Doherty, T.S. et al. A guide to ecosystem models and their environmental applications. Nat Ecol Evol (2020). https://doi.org/10.1038/s41559-020-01298-8

Download citation


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing