Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Endochondral bone in an Early Devonian ‘placoderm’ from Mongolia


Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans—the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have primarily cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appear to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of ‘placoderm’-like fish from the Early Devonian (Pragian) of western Mongolia described using X-ray computed microtomography. The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalized bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MPC-FH100/9.1, a ‘placoderm’ skull roof and braincase from the Early Devonian of Mongolia.
Fig. 2: Endoskeletal mineralization in fossil gnathostomes.
Fig. 3: Braincase endocavity of MPC-FH100/9.1, Minjinia turgenensis.
Fig. 4: Strict consensus tree from equal weights parsimony analysis of early gnathostomes showing distribution of endochondral bone and exoskeletal armour.

Data availability

The holotype specimen of M. turgenensis will be permanently deposited in the collections of the Institute of Paleontology, Mongolian Academy of Sciences. Original tomograms are available at and rendered models are available at The phylogenetic character list and dataset are available as Supplementary Information and Supplementary Data 1. The LifeScience Identifier for M. turgenensis is

Code availability

R code for generating partitions based on character fits and code for likelihood ancestral state reconstructions and plots are available in the Supplementary Data 1 and 2.


  1. 1.

    Hall, B. K. Bones and Cartilage (Academic, 2005).

  2. 2.

    Janvier, P. Early Vertebrates (Oxford Univ. Press, 1996).

  3. 3.

    Donoghue, P. C. J., Sansom, I. & Downs, J. P. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J. Exp. Zool. 306B, 278–294 (2006).

    Article  CAS  Google Scholar 

  4. 4.

    Rosen, D. E., Forey, P. L., Gardiner, B. G. & Patterson, C. Lungfishes, tetrapods, paleontology, and plesiomorphy. Bull. Am. Mus. Nat. Hist. 167, 159–276 (1981).

    Google Scholar 

  5. 5.

    Gardiner, B. G. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from Upper Devonian of Western Australia. Bull. Br. Mus. Nat. Hist. Geol. 37, 173–428 (1984).

    Google Scholar 

  6. 6.

    Maisey, J. G. Heads and tails: a chordate phylogeny. Cladistics 2, 201–256 (1986).

    Article  Google Scholar 

  7. 7.

    Friedman, M. & Brazeau, M. A reappraisal of the origin and basal radiation of the Osteichthyes. J. Vertebr. Paleontol. 30, 36–56 (2010).

    Article  Google Scholar 

  8. 8.

    Maisey, J. G., Denton, J. S. S., Burrow, C. & Pradel, A. Architectural and ultrastructural features of tessellated calcified cartilage in modern and extinct chondrichthyan fishes. J. Fish Biol. (2020).

  9. 9.

    Wang, N.-Z., Donoghue, P. C. J., Smith, M. M. & Sansom, I. Histology of the galeaspid dermoskeleton and endoskeleton, and the origin and early evolution of the vertebrate cranial endoskeleton. J. Vertebr. Paleontol. 25, 745–756 (2005).

    Article  Google Scholar 

  10. 10.

    Karatajūtė-Talimaa, V. & Novitskaya, L. Sodolepis—a new representative of Mongolepidida (Chondrichthyes?) from the lower Silurian of Mongolia. Paleontol. Zh. 5, 96–103 (1997).

    Google Scholar 

  11. 11.

    Karatajūtė-Talimaa, V. & Novitskaya, L. Teslepis—a new representative of mongolepid elasmobranchs from the Lower Silurian of Mongolia. Paleontol. Zh. 4, 36–43 (1992).

    Google Scholar 

  12. 12.

    Karatajūtė-Talimaa, V., Novitskaya, L. & Rozman, K. S. Mongolepis—a new lower Silurian genus of elasmobranchs from Mongolia. Paleontol. Zh. 1, 76–86 (1990).

    Google Scholar 

  13. 13.

    Andreev, P. et al. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. PeerJ 4, e1850 (2016).

    Article  Google Scholar 

  14. 14.

    Vorobjeva, E. I. & Janvier, P. Observations to the note by E Vorobjeva: ‘First discovery of Palaeozoic fishes on the territory of the Mongolian Republic’. Geobios 17, 379–380 (1984).

    Article  Google Scholar 

  15. 15.

    Gegenbaur, C. Grundriss der vergleichenden Anatomie (Wilhelm Engelmann, 1874).

  16. 16.

    Alekseeva, R. E., Mendbayar, B. & Erlanger, O. A. Brachiopods and Biostratigraphy of the Lower Devonian of Mongolia (Nauka, 1981).

  17. 17.

    Alekseeva, R. E. Devonian Biostratigraphy of Mongolia (Nauka, 1993).

  18. 18.

    Mark-Kurik, E. in Morphology, Phylogeny and Paleobiogeography of Fossil Fishes (eds Elliott, D. K. et al.) 101–106 (Verlag Dr. Friedrich Pfeil, 2010).

  19. 19.

    Ørvig, T. Description, with special reference to the dermal skeleton, of a new radotinid arthrodire from the Gedinnian of Arctic Canada. Colloq. Int. Cent. Natl Rech. Sci. 218, 43–71 (1975).

  20. 20.

    Olive, S., Goujet, D., Lelièvre, H. & Janjou, D. A new Placoderm fish (Acanthothoraci) from the Early Devonian Jauf Formation (Saudi Arabia). Geodiversitas 33, 393–409 (2011).

    Article  Google Scholar 

  21. 21.

    Wängsjö, G. The Downtonian and Devonian vertebrates of Spitsbergen. IX. Norsk Polarinstitutt Skrifter 97, 1–611 (1952).

    Google Scholar 

  22. 22.

    Charest, F., Johanson, Z. & Cloutier, R. Loss in the making: absence of pelvic fins and presence of paedomorphic pelvic girdles in a Late Devonian antiarch placoderm (jawed stem-gnathostome). Biol. Lett. 14, 20180199 (2018).

    Article  CAS  Google Scholar 

  23. 23.

    Dupret, V., Sanchez, S., Goujet, D. & Ahlberg, P. E. The internal cranial anatomy of Romundina stellina Ørvig, 1975 (Vertebrata, Placodermi, Acanthothoraci) and the origin of jawed vertebrates—anatomical atlas of a primitive gnathostome. PLoS ONE 12, e0171241 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Stensiö, E. A. La cavité labyrinthique, l’ossification sclérotique et l’orbite de Jagorina. Colloq. Int. Cent. Natl Rech. Sci. 21, 9–43 (1950).

    Google Scholar 

  25. 25.

    Stensiö, E. A. Anatomical studies on the arthrodiran head. K. Sven. Vetenskapsakad. Handl. 9, 1–419 (1963).

    Google Scholar 

  26. 26.

    Goujet, D. Les Poissons Placodermes du Spitsberg (Cahiers de Paléontologie, Editions du CNRS, 1984).

  27. 27.

    Davis, S. P., Finarelli, J. A. & Coates, M. I. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486, 247–250 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Castiello, M. & Brazeau, M. D. Neurocranial anatomy of the petalichthyid placoderm Shearsbyaspis oepiki Young revealed by X‐ray computed microtomography. Palaeontology 61, 369–389 (2018).

    Article  Google Scholar 

  29. 29.

    Rosa, B. B., Melo, G. A. R. & Barbeitos, M. S. Homoplasy-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Syst. Biol. 54, 373 (2019).

    Google Scholar 

  30. 30.

    Brazeau, M. D. & Friedman, M. The characters of Palaeozoic jawed vertebrates. Zool. J. Linn. Soc. 170, 779–821 (2014).

    Article  Google Scholar 

  31. 31.

    Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188–193 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Giles, S., Friedman, M. & Brazeau, M. D. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature 520, 82–85 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Miles, R. S. in Interrelationships of Fishes (eds Greenwood, P. H. et al.) 63–103 (Academic, 1973).

  34. 34.

    Zhu, M. Bone gain and loss: insights from genomes and fossils. Natl Sci. Rev. 1, 490–492 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Janvier, P. Les Céphalaspides du Spitsberg (Éditions du CNRS, 1985).

  36. 36.

    Ørvig, T. Histologic studies of placoderms and fossil elasmobranchs. Arkiv för Zoologi 2, 321–454 (1951).

  37. 37.

    Young, G. C. New information on the structure and relationships of Buchanosteus (Placodermi: Euarthrodira) from the Early Devonian of New South Wales. Zool. J. Linn. Soc. 66, 309–352 (1979).

    Article  Google Scholar 

  38. 38.

    Miles, R. S. & Young, G. C. in Problems in Vertebrate Evolution (eds Andrews, S. M. et al.) 123–198 (Academic, 1977).

  39. 39.

    Stensiö, E. A. On the head of the macropetalichthyids. Field Mus. Nat. Hist. Publ. Geol. Ser. 4, 87–197 (1925).

    Google Scholar 

  40. 40.

    Ørvig, T. Notes on some paleozoic lower vertebrates from Spitsbergen and North America. Nor. Geol. Tidsskr. 37, 285–353 (1957).

    Google Scholar 

  41. 41.

    Sansom, R. Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J. Syst. Palaeontol. 7, 95–115 (2009).

    Article  Google Scholar 

  42. 42.

    Schaeffer, B. The braincase of the holostean fish Macrepistius, with comments on neurocranial ossification in the Actinopterygii. American Museum Novitates 2459, 1–34 (1971).

  43. 43.

    Watson, D. M. S. The acanthodian fishes. Phil. Trans. R. Soc. Lond. B 228, 49–146 (1937).

    Article  Google Scholar 

  44. 44.

    Burrow, C. J., Davidson, R. G., Blaauwen, den, J. L. & Newman, M. J. Revision of Climatius reticulatus Agassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data. J. Vertebr. Paleontol. 35, e913421 (2015).

    Article  Google Scholar 

  45. 45.

    Dean, M. N., Socha, J. J., Hall, B. K. & Summers, A. P. Canaliculi in the tessellated skeleton of cartilaginous fishes. J. Appl. Ichthyol. 26, 263–267 (2010).

    Article  Google Scholar 

  46. 46.

    Atake, O. J., Cooper, D. M. L. & Eames, B. F. Bone-like features in skate suggest a novel elasmobranch synapomorphy and deep homology of trabecular mineralization patterns. Acta Biomater. 84, 424–436 (2019).

    Article  Google Scholar 

  47. 47.

    Pearson, D. M. & Westoll, T. S. The Devonian actinopterygian Cheirolepis Agassiz. Earth Environ. Sci. Trans. R. Soc. Edinb. 70, 337–399 (1979).

    Google Scholar 

  48. 48.

    Giles, S. et al. Endoskeletal structure in Cheirolepis (Osteichthyes, Actinopterygii), an early ray‐finned fish. Palaeontology 58, 849–870 (2015).

    Article  Google Scholar 

  49. 49.

    Cloutier, R. in Devonian Fishes and Plants (eds Schultze, H.-P. & Cloutier, R.) 227–247 (Verlag Dr. Friedrich Pfeil, 1996).

  50. 50.

    Grande, L. & Bemis, W. E. Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J. Vertebr. Paleontol. Suppl. 11 (Suppl. 1), 1–121 (1991).

  51. 51.

    Eames, B. F. et al. Skeletogenesis in the swell shark Cephaloscyllium ventriosum. J. Anat. 210, 542–554 (2007).

    Article  Google Scholar 

  52. 52.

    Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014).

    CAS  Article  Google Scholar 

  53. 53.

    Ryll, B., Sanchez, S., Haitina, T., Tafforeau, P. & Ahlberg, P. E. The genome of Callorhinchus and the fossil record: a new perspective on SCPP gene evolution in gnathostomes. Evol. Dev. 16, 123–124 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Marconi, A., Hancock-Ronemus, A. & Gillis, J. A. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. eLife Sci. 9, 2813 (2020).

    Google Scholar 

  55. 55.

    King, B., Qiao, T., Lee, M. S. Y., Zhu, M. & Long, J. A. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst. Biol. 66, 499–516 (2016).

    Google Scholar 

  56. 56.

    Clement, A. M. et al. Neurocranial anatomy of an enigmatic Early Devonian fish sheds light on early osteichthyan evolution. eLife Sci. 7, e34349 (2018).

    Article  Google Scholar 

  57. 57.

    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  Google Scholar 

  58. 58.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  Article  Google Scholar 

  59. 59.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  Article  Google Scholar 

  60. 60.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  62. 62.

    Maddison, W. P. and Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.61 (2019)

  63. 63.

    Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2017).

    Article  CAS  Google Scholar 

  64. 64.

    Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0a166 (Sinauer Associates, 2003).

Download references


M. Bolortsetseg generously assisted M.D.B. with contacts and field experience in Mongolia. Fieldwork was supported by National Geographic Society grants CRE 8769-10 and GEFNE35-12 to M.D.B. The field contributions of A.J. were supported by funds from the Anna Maria Lundin’s stipend from Smålands Nation, Uppsala University. The field contributions of R.S. were supported by a Royal Society Research Grant and the University of Manchester. The majority of this work was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement number 311092 to M.D.B. R.P.D. was also supported by the Île-de-France DIM (Domaine d’Intérêt Majeur) Matériaux Anciens et Patrimoniaux grant PHARE. S. Walsh is thanked for access to and loan of a specimen at the National Museums of Scotland. Synchrotron tomography was performed at the European Synchrotron Radiation Facility (application LS 2451) with the assistance of P. Tafforeau. S.G. was supported by a Royal Society Dorothy Hodgkin Research Fellowship. M. Friedman is thanked for undertaking the X-ray computed microtomography analysis. This study includes data produced in the CTEES facility at University of Michigan, supported by the Department of Earth and Environmental Sciences and College of Literature, Science, and the Arts. TNT was made available with the support of the Willi Hennig Society.

Author information




M.D.B. conceived and designed the study. M.D.B., A.J., Y.A. and E.Z. participated in all field seasons. R.P.D. and A.J. undertook preliminary computed tomography scanning and segmentation that revealed the fossil was a ‘placoderm’ and had endochondral bone. R.S. discovered the first vertebrate remains in the first field season at Yamaat Gol in 2010. S.G. undertook the segmentation of Minjinia with input from M.D.B. A.J. performed segmentation of Diplacanthus tissue. M.C. provided input on occipital comparative morphology of ‘placoderms’. R.P.D. provided data and comparative analyses and data for endoskeletal tissue. Y.A. provided background on the geology, palaeontology and stratigraphy of the type location; E.Z. and Y.A. organized field logistics and permitting. M.D.B., S.G., M.C., R.P.D. and A.J. undertook the anatomical interpretation and prepared the figures. M.D.B. and S.G. conducted the phylogenetic analyses. R.S. conducted the parsimony branch support analyses. T.G. wrote the script for generating MrBayes partitions from TNT’s character fits table and conducted the likelihood and model-fitting analyses. The manuscript was written by M.D.B., R.P.D. and S.G.

Corresponding author

Correspondence to Martin D. Brazeau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tomograms of endoskeletal ossification in MPC-FH100/9.1, Minjinia turgenensis.

Top row: semi-coronal sections through braincase. Double-headed arrows indicate anterior-posterior (a-p) dorsal-ventral (d-v) axes. Bottom row: semi-transverse sections through posterior part of endocranium. Voids of black space represent mouldic preservation. Scale bars, 10 mm and apply across each row of panels.

Extended Data Fig. 2 Right orbital wall and innervation pattern of MPC-FH100/9.1, Minjinia turgenensis.

a, Orbit in anterolateral view showing position of nerve openings (pink infill). b, Endocast in the same perspective showing the relationship between nerve canals and endocast. a.scc, anterior semicircular canal; N.V2,3 trunk of the trigeminal nerve canal for branches 2 and 3; N.VIIhm, hyomandibular branch of facial nerve canal; N.VIIpal, palatine branch of facial nerve canal; sac, sacculus; sup.opht, canal for supra-ophthalmic nerve.

Extended Data Fig. 3 Results of phylogenetic parsimony analysis.

Dataset consists of 95 taxa and 284 characters. Both trees are strict consensus topologies. Equal weights parsimony analysis using the ratchet resulted in 240 trees with a length of 831 steps. Implied weights parsimony analysis using random addition sequence + branch-swapping resulted in 8 optimal trees with score 85.20513. Double-digit figures above internal branches are bootstrap values of 50% and over; single-digit figures below branches are Bremer decay index values. Blue shading: osteichthyan total group (dark blue: crown group); orange shading: chondrichthyan total group (dark orange: crown group).

Extended Data Fig. 4 Results of Bayesian phylogenetic analysis using both partitioned and unpartitioned data.

Majority-rules consensus trees with posterior probabilities shown along branches. Blue shading: osteichthyan total group (dark blue: crown group); orange shading: chondrichthyan total group (dark orange: crown group).

Extended Data Fig. 5 Likelihood ancestral state mapping of endochondral bone on equal weights parsimony results.

a, ARD, all rates different model; b, ER, equal rates model.

Extended Data Fig. 6 Likelihood ancestral state mapping of endochondral bone on unpartitioned Bayesian analysis results.

a, ARD, all rates different model; b, ER, equal rates model.

Supplementary information

Supplementary Information

Full phylogenetic character list and notes, character-state optimization data for a fully resolved parsimony tree, Supplementary Table 1 and references.

Reporting Summary

Peer Review Information

Supplementary Video 1

A transverse section through the otic wall of M. turgenensis showing endochondral bone corresponding to Fig. 1a. Note that the thickness of the trabeculae is exaggerated: the trabeculae are encrusted in a carbonaceous matrix that does not contrast strongly with bone. This resulted in difficulties separating the trabeculae from the matrix with a single consistent threshold value. Indigo-coloured material is cranial exoskeleton. Taupe-coloured material is endoskeletal bone.

Supplementary Video 2

A transverse section through the otic wall of Ligulalepis showing endochondral bone corresponding to Fig. 1c. Data are from Clement et al. (2018) (main-text ref. 56). Indigo-coloured material is cranial exoskeleton. Taupe-coloured material is endoskeletal bone.

Supplementary Data 1

Phylogenetic character data (master Nexus file), command files, R scripts for data partitions and command lists for phylogenetic analyses in TNT.

Supplementary Data 2

R scripts and markdown for generating figures and output tables for ancestral states using maximum likelihood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brazeau, M.D., Giles, S., Dearden, R.P. et al. Endochondral bone in an Early Devonian ‘placoderm’ from Mongolia. Nat Ecol Evol 4, 1477–1484 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing