Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ecological variables for developing a global deep-ocean monitoring and conservation strategy

Matters Arising to this article was published on 16 November 2020

Abstract

The deep sea (>200 m depth) encompasses >95% of the world’s ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Deep-sea monitoring strategy based on DEEVs.
Fig. 2: Expert elicitation results.
Fig. 3: Tools for investigating the deep ocean.

Data availability

The dataset generated and analysed during the current study is available from the corresponding author on reasonable request.

References

  1. 1.

    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mengerink, K. J. et al. A call for deep-ocean stewardship. Science 344, 696–698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cordes, E. E. et al. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front. Env. Sci. 4, 58 (2016).

    Article  Google Scholar 

  4. 4.

    Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea. Ecol. Lett. 7, 821–828 (2004).

    Article  Google Scholar 

  5. 5.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Armstrong, C. W., Foley, N. S., Tinch, R. & van den Hove, S. Services from the deep: steps towards valuation of deep-sea goods and services. Ecosyst. Serv. 2, 2–13 (2012).

    Article  Google Scholar 

  7. 7.

    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).

    Article  Google Scholar 

  8. 8.

    Danovaro, R. et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 18, 1–8 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8861–8866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Levin, L. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. 5, 4 (2017).

    Article  Google Scholar 

  13. 13.

    Hughes, T. P., Bellwood, D. R., Folke, C. S., McCook, L. J. & Pandolfi, J. M. No-take areas, herbivory and coral reef resilience. Trends Ecol. Evol. 22, 1–3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kachelriess, D., Wegmann, M., Gollock, M. & Pettorelli, N. The application of remote sensing for marine protected area management. Ecol. Indic. 36, 169–177 (2014).

    Article  Google Scholar 

  15. 15.

    Levin, L. A. & Dayton, P. K. Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol. 24, 606–617 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Canals, M. et al. Flushing submarine canyons. Nature 444, 354–357 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).

    Article  Google Scholar 

  18. 18.

    Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Scholes, R. J. et al. Building a global observing system for biodiversity. Curr. Opin. Environ. Sustain. 4, 139 (2012).

    Article  Google Scholar 

  20. 20.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lindstrom, E. J., Gunn, A., Fischer, A. & McCurdy, L. K. A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing (UNESCO, 2012).

  22. 22.

    Levin, L. A. et al. Global observing needs in the deep ocean. Front. Mar. Sci. 6, 241 (2019).

    Article  Google Scholar 

  23. 23.

    Woodall, L. C. et al. A multidisciplinary approach for generating globally consistent data on mesophotic, deep-pelagic, and bathyal biological communities. Oceanography 31, 76–89 (2018).

    Article  Google Scholar 

  24. 24.

    Danovaro, R. et al. An ecosystem-based deep-ocean strategy. Science 355, 452–454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Qualtrics, I. (Qualtrics, 2013).

  26. 26.

    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res. II 43, 129–156 (1996).

    Article  CAS  Google Scholar 

  28. 28.

    Hurtt, G. C. & Armstrong, R. A. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. II 43, 653–683 (1996).

    Article  CAS  Google Scholar 

  29. 29.

    Aguzzi, J. & Company, J. B. Chronobiology of deep-water decapod crustaceans on continental margins. Adv. Mar. Biol. 58, 155–225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Herná, S. et al. Carbon sequestration and zooplankton lunar cycles: could we be missing a major component of the biological pump? Limnol. Oceanogr. 55, 2503–2512 (2010).

    Article  Google Scholar 

  31. 31.

    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article  Google Scholar 

  33. 33.

    Yool, A. et al. Big in the benthos: future change of seafloor community biomass in a global, body size‐resolved model. Glob. Change Biol. 23, 3554–3566 (2017).

    Article  Google Scholar 

  34. 34.

    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pusceddu, A., Dell’Anno, A., Fabiano, M. & Danovaro, R. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Prog. Ser. 375, 41–52 (2009).

    Article  CAS  Google Scholar 

  36. 36.

    Van Dover, C. L. Hydrothermal vent ecosystems and conservation. Oceanography 25, 313–316 (2012).

    Article  Google Scholar 

  37. 37.

    Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Mar. Sci. 3, 72 (2016).

    Article  Google Scholar 

  38. 38.

    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).

    Article  Google Scholar 

  39. 39.

    Danovaro, R., Corinaldesi, C., Rastelli, E. & Dell’Anno, A. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquat. Microb. Ecol. 75, 81–90 (2015).

    Article  Google Scholar 

  40. 40.

    Gambi, C., Pusceddu, A., Benedetti‐Cecchi, L. & Danovaro, R. Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Glob. Ecol. Biogeogr. 23, 24–39 (2014).

    Article  Google Scholar 

  41. 41.

    Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).

    Article  Google Scholar 

  42. 42.

    Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a Framework for Community Action in the field of Marine Environmental Policy (Marine Strategy Framework Directive, 2008).

  43. 43.

    Van Dover, C. L. et al. Ecological restoration in the deep sea: Desiderata. Mar. Policy 44, 98–106 (2014).

    Article  Google Scholar 

  44. 44.

    Gollner, S. et al. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. 129, 76–101 (2017).

    Article  CAS  Google Scholar 

  45. 45.

    Jamieson, A. J., Malkocs, T., Piertney, S. B., Fujii, T. & Zhang, Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 1, 0051 (2017).

    Article  Google Scholar 

  46. 46.

    Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).

    Article  Google Scholar 

  47. 47.

    André, M. et al. Listening to the deep: live monitoring of ocean noise and cetacean acoustic signals. Mar. Pollut. Bull. 63, 18–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

    Article  CAS  Google Scholar 

  49. 49.

    Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Foster, L. C., Schmidt, D. N., Thomas, E., Arndt, S. & Ridgwell, A. Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. Proc. Natl Acad. Sci. USA 110, 9273–9276 (2013).

    Article  Google Scholar 

  51. 51.

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    Article  CAS  Google Scholar 

  52. 52.

    Roberts, J. M. & Cairns, S. D. Cold-water corals in a changing ocean. Curr. Opin. Environ. Sustain. 7, 118–126 (2014).

    Article  Google Scholar 

  53. 53.

    Cartes, J. E., Maynou, F., Fanelli, E., López-Pérez, C. & Papiol, V. Changes in deep-sea fish and crustacean communities at 1000–2200 m in the Western Mediterranean after 25 years: relation to hydro-climatic conditions. J. Mar. Syst. 143, 138–153 (2015).

    Article  Google Scholar 

  54. 54.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Smith, K. E. & Thatje, S. The secret to successful deep-sea invasion: does low temperature hold the key? PLoS ONE 7, e51219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yasuhara, M., Cronin, T. M., Okahashi, H. & Linsley, B. K. Abrupt climate change and collapse of deep-sea ecosystems. Proc. Natl Acad. Sci. USA 105, 1556–1560 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Adams, D. K. et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 332, 580–583 (2011).

    Article  CAS  Google Scholar 

  58. 58.

    Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Van der Grient, J. M. & Rogers, A. D. Body size versus depth: regional and taxonomical variation in deep-sea meio-and macrofaunal organisms. Adv. Mar. Biol. 71, 71–108 (2015).

    Article  Google Scholar 

  60. 60.

    Galil, B. S., Danovaro, R., Rothman, S. B. S., Gevili, R. & Goren, M. Invasive biota in the deep-sea Mediterranean: an emerging issue in marine conservation and management. Biol. Invas. 20, 281–288 (2019).

    Article  Google Scholar 

  61. 61.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    Article  CAS  Google Scholar 

  62. 62.

    Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. Lond. B 280, 20131684 (2013).

    Article  CAS  Google Scholar 

  63. 63.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  65. 65.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    Article  CAS  Google Scholar 

  66. 66.

    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298 (2016).

    Article  Google Scholar 

  67. 67.

    Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).

    Article  CAS  Google Scholar 

  68. 68.

    Salinas-de-León, P. et al. Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci. Rep. 8, 1788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Roberts, C. M. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).

    Article  Google Scholar 

  70. 70.

    Clark, M. R. & Dunn, M. R. Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation. Environ. Conserv. 39, 204–214 (2012).

    Article  Google Scholar 

  71. 71.

    Pellerin, B. A. et al. Emerging tools for continuous nutrient monitoring networks: sensors advancing science and water resources protection. J. Am. Water Resour. Assoc. 52, 993–1008 (2016).

    Article  Google Scholar 

  72. 72.

    Rochman, C. M., Cook, A. M. & Koelmans, A. A. Plastic debris and policy: using current scientific understanding to invoke positive change. Environ. Toxicol. Chem. 35, 1617–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).

    Article  Google Scholar 

  74. 74.

    Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteor. Soc. 95, 1431–1443 (2014).

    Article  Google Scholar 

  75. 75.

    Aguzzi, J. et al. Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore in Sagami Bay, Japan. Sci. Rep. 8, 11163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ. Sci. Tech. 53, 6616–6631 (2019).

    Article  CAS  Google Scholar 

  77. 77.

    Brandt, A. et al. Cutting the umbilical: new technological perspectives in benthic deep-sea research. J. Mar. Sci. Eng. 4, 36 (2016).

    Article  Google Scholar 

  78. 78.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979–1005 (2010).

    Article  CAS  Google Scholar 

  79. 79.

    Billett, D. S. M. et al. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog. Oceanogr. 50, 325–348 (2001).

    Article  Google Scholar 

  80. 80.

    Ruhl, H. A. & Smith, K. L. Jr Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Smith, K. L., Ruhl, H. A., Kahru, M., Huffard, C. L. & Sherman, A. D. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 110, 19838–19841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ramirez-Llodra, E. Fecundity and life-history strategies in marine invertebrates. Adv. Mar. Biol. 43, 88–170 (2002).

    Google Scholar 

  83. 83.

    McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl Acad. Sci. USA 109, 15366–15371 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Yasuhara, M. & Danovaro, R. Temperature impacts on deep‐sea biodiversity. Biol. Rev. 1, 275–287 (2016).

    Article  Google Scholar 

  85. 85.

    McClain, C. R. & Barry, J. P. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964–976 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Millennium Ecosystem Assessment Ecosystems and Human Well-being: Desertification Synthesis (World Resources Institute, 2005).

  90. 90.

    Hein, L. & De Ridder, N. Desertification in the Sahel: a reinterpretation. Glob. Change Biol. 12, 751–758 (2006).

    Article  Google Scholar 

  91. 91.

    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320 (2012).

    Article  Google Scholar 

  92. 92.

    Pham, C. K. et al. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems. Sci. Rep. 4, 4837 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Puig, P. et al. Ploughing the deep seafloor. Nature 489, 286–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Chiba, S. et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy 96, 204–212 (2018).

    Article  Google Scholar 

  95. 95.

    Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. M. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Hestetun, J. T., Pomponi, S. A. & Rapp, H. T. The cladorhizid fauna (Porifera, Poecilosclerida) of the Caribbean and adjacent waters. Zootaxa 4175, 521–538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables”—eEOVs) for observing dynamics and change in Southern Ocean ecosystems. J. Mar. Syst. 161, 26–41 (2016).

    Article  Google Scholar 

  98. 98.

    McIntyre, A. (ed.) Life in the World’s Oceans: Diversity, Distribution, and Abundance (John Wiley & Sons, 2010).

  99. 99.

    Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5, e11832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Gambi, C. et al. Functional response to food limitation can reduce the impact of global change in the deep‐sea benthos. Glob. Ecol. Biogeogr. 26, 1008–1021 (2017).

    Article  Google Scholar 

  102. 102.

    Holt, E. A. & Miller, S. W. Bioindicators: using organisms to measure environmental impacts. Nat. Educ. 3, 8 (2010).

    Google Scholar 

  103. 103.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Ann. Rev. Mar. Sci. 4, 79–112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Fanelli, E., Bianchelli, S. & Danovaro, R. Deep-sea mobile megafauna of Mediterranean submarine canyons and open slopes: analysis of spatial and bathymetric gradients. Progr. Oceanogr. 168, 23–34 (2018).

    Article  Google Scholar 

  107. 107.

    Dunn, D. C. et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Adv. 4, eaar4313 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    FAO Vulnerable Marine Ecosystems Database (FAO, March 2019); https://go.nature.com/2uBsfOC

  109. 109.

    Miller, K. A., Thompson, K. F., Johnston, P. & Santillo, D. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front. Mar. Sci. 4, 418 (2018).

    Article  Google Scholar 

  110. 110.

    Rogers, A. D., Clark, M. R., Hall-Spencer, J. M. & Gjerde, K. M. The Science Behind the Guidelines: A Scientific Guide to the FAO Draft International Guidelines (December 2007) for the Management of Deep-Sea Fisheries in the High Seas and Examples of how the Guidelines may be Practically Implemented (IUCN, 2008).

Download references

Acknowledgements

We deeply thank M. Rex (University of Massachusetts) for valuable discussion and suggestions on an early draft of the manuscript. We are very grateful to M. Baker for supporting the authors in the distribution of the Qualtrics survey to the INDEEP and DOSI communities and to the deep-sea scientists that participated to the survey and J. Cerri for the analysis of Qualtrics results. This work was supported by the H2020 project MERCES (GA N. 689518) and IDEM (GA N. 11.0661/2017/750680/SUB/EN V.C2.). E.R.-L. was supported by the Norwegian project MarMine (247626), the Norwegian Institute for Water Research and the H2020 project MERCES (GA N. 689518). P.V.R.S. was supported by the NSERC Canadian Healthy Oceans Network and CFREF Ocean Frontier Institute. L.T. is supported by JPI Oceans2 and ONC. J.A. is supported by ARIM (Autonomous Robotic sea-floor Infrastructure for bentho-pelagic Monitoring; MartTERA ERA-Net Cofound). L.L. acknowledges NSF grant OCE 1634172 and the Deep-Ocean Observing Strategy subcontract from the Consortium for Ocean Leadership. H.R. was supported by the EMSO-Link project of the European Commission (Grant agreement ID: 731036).

Author information

Affiliations

Authors

Contributions

R.D., E.F., J.A., D.B., L.C., C.C., A.D., K.G., A.J.J., S.K., C.M., L.L., N.L., E.R.-L., H.R., C.R.S., P.V.R.S., L.T., C.L.V.D. and M.Y. contributed equally to the work, discussion of the data and manuscript writing. All authors critically revised the drafts and the amended version and gave final approval for publication.

Corresponding author

Correspondence to Roberto Danovaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1.

Ranking of the essential variables for biodiversity measures. Results of the Expert Elicitation obtained by using the Plackett–Luce model for the analysis about the prioritization of essential variables for biodiversity measures (y axis). The worth of each variable is reported on log scale (x axis). Average weighted Cohen’s κ is also reported on the upper part of the graph. ES, expected species number.

Extended Data Fig. 2.

Ranking of the readiness of the available technologies for deep-sea ecological monitoring. Results of the Plackett–Luce model for the analysis of responses about the readiness of technology for deep-sea monitoring according to the essential variables identified for each scientific area. The Cohen’s κ value is reported on the upper part of each graph.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danovaro, R., Fanelli, E., Aguzzi, J. et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol 4, 181–192 (2020). https://doi.org/10.1038/s41559-019-1091-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing