Abstract
Anthropogenic land use and land cover changes (LULCC) have a large impact on the global terrestrial carbon sink, but this effect is not well characterized according to biogeographical region. Here, using state-of-the-art Earth observation data and a dynamic global vegetation model, we estimate the impact of LULCC on the contribution of biomes to the terrestrial carbon sink between 1992 and 2015. Tropical and boreal forests contributed equally, and with the largest share of the mean global terrestrial carbon sink. CO2 fertilization was found to be the main driver increasing the terrestrial carbon sink from 1992 to 2015, but the net effect of all drivers (CO2 fertilization and nitrogen deposition, LULCC and meteorological forcing) caused a reduction and an increase, respectively, in the terrestrial carbon sink for tropical and boreal forests. These diverging trends were not observed when applying a conventional LULCC dataset, but were also evident in satellite passive microwave estimates of aboveground biomass. These datasets thereby converge on the conclusion that LULCC have had a greater impact on tropical forests than previously estimated, causing an increase and decrease of the contributions of boreal and tropical forests, respectively, to the growing terrestrial carbon sink.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink
Communications Earth & Environment Open Access 03 July 2023
-
Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions
Nature Communications Open Access 26 September 2022
-
Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration
Nature Communications Open Access 26 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
Data from the ESA-CCI land cover dataset is freely available from ESA-CCI (http://www.esa-landcover-cci.org/?q=node/169)15. The Köppen climate classification is freely available at https://earthdata.nasa.gov. The LPJ-GUESS simulated terrestrial carbon exchange estimates, the simulated AGB data, the fractions of woody, herbaceous and bares land, and the annual SMOS L-VOD data are available at https://doi.org/10.17894/ucph.7a8d3a3c-6056-445b-b05c-4212231aff40. The VOD-AGB dataset derived over the period 1993–2012 can be accessed at http://www.wenfo.org/wald/global-biomass18. For the TRENDY data, please see http://dgvm.ceh.ac.uk/node/21/.
Code availability
The codes used in the data analysis is available at https://doi.org/10.17894/ucph.7a8d3a3c-6056-445b-b05c-4212231aff40. The codes are: 1) the code used for converting the ESA-CCI land cover to fractions of woody, herbaceous and bares land; 2) the codes used for separating the terrestrial Earth surface into its different biomes; 3) the codes used for partitioning the global-scale mean, trend and interannual variability in the terrestrial carbon sink to the different biomes; and 4) the codes used for the factorial simulations.
References
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).
Sellers, P. J., Schimel, D. S., Moore, B., Liu, J. & Eldering, A. Observing carbon cycle–climate feedbacks from space. Proc. Natl Acad. Sci. USA 115, 7860–7868 (2018).
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).
Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 3344 (2019).
Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).
Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).
Erb, K.-H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).
ESA CCI Land Cover Map http://www.esa-landcover-cci.org/?q=node/169 (2017).
Bontemps, S. et al. Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences 9, 2145–2157 (2012).
Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).
Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
Rodríguez-Fernández, N. J. et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 15, 4627–4645 (2018).
Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
Tian, F. et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat. Ecol. Evol. 2, 1428–1435 (2018).
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).
Zeng, N. et al. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 3, 014002 (2008).
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554–554 (2011).
Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).
Gifford, R. M. The CO2 fertilising effect—does it occur in the real world? New Phytol. 163, 221–225 (2004).
Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).
Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).
Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148 (2017).
Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).
Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).
Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).
Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).
Piao, S., Friedlingstein, P., Ciais, P., Zhou, L. & Chen, A. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 33, L23402 (2006).
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344 (2015).
Gaubert, B. et al. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences 16, 117–134 (2019).
Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637 (2001).
Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).
Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1,000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).
Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plicht, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).
Lamarque, J.-F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).
Ahlström, A., Miller, P. A. & Smith, B. Too early to infer a global NPP decline since 2000. Geophys. Res. Lett. 39, L15403 (2012).
Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).
Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).
Acknowledgements
This research work was funded by the Swedish National Space Board (Dnr 95/16) (T.T.) and the Danish Council for Independent Research (DFF), grant ID: DFF–6111-00258 (T.T., R.F., S.H. and M.B.). S.H. additionally acknowledges funding from the Belgian Science Policy Office in the frame of the U-TURN project (SR/00/339 and SR/00/366). M.B. was supported by an AXA post-doctoral fellowship. J.-P.W. acknowledges funding from Centre National d’Etudes Spatiales (TOSCA programme) and from the European Space Agency. F.T. was supported by the Marie Skłodowska-Curie grant (project number 746347).
Author information
Authors and Affiliations
Contributions
T.T., R.F., G.S. and S.H. designed the study. T.T., S.H. and R.F. prepared the ESA-CCI data. G.S. conducted the LPJ-GUESS simulations. J.-P.W., L.F. and F.T. prepared SMOS-IC L-VOD data. S.O. and G.S. prepared the LUH2 data. T.T. and G.S. analysed the data. The results were interpreted by T.T., R.F., G.S., S.H., P.C., A.A., J.A. and Z.W. with contributions from all co-authors. The manuscript was drafted by T.T., R.F., G.S., P.C., S.H., F.T., A.A. and M.B. with contributions from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods, Results, discussions, Figs. 1–11 and Tables 1–9.
Rights and permissions
About this article
Cite this article
Tagesson, T., Schurgers, G., Horion, S. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat Ecol Evol 4, 202–209 (2020). https://doi.org/10.1038/s41559-019-1090-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-019-1090-0
This article is cited by
-
Evidence and attribution of the enhanced land carbon sink
Nature Reviews Earth & Environment (2023)
-
Global increase in biomass carbon stock dominated by growth of northern young forests over past decade
Nature Geoscience (2023)
-
Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink
Communications Earth & Environment (2023)
-
Attributing the impacts of ecological engineering and climate change on carbon uptake in Northeastern China
Landscape Ecology (2023)
-
A planetary boundary for green water
Nature Reviews Earth & Environment (2022)