Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink


Anthropogenic land use and land cover changes (LULCC) have a large impact on the global terrestrial carbon sink, but this effect is not well characterized according to biogeographical region. Here, using state-of-the-art Earth observation data and a dynamic global vegetation model, we estimate the impact of LULCC on the contribution of biomes to the terrestrial carbon sink between 1992 and 2015. Tropical and boreal forests contributed equally, and with the largest share of the mean global terrestrial carbon sink. CO2 fertilization was found to be the main driver increasing the terrestrial carbon sink from 1992 to 2015, but the net effect of all drivers (CO2 fertilization and nitrogen deposition, LULCC and meteorological forcing) caused a reduction and an increase, respectively, in the terrestrial carbon sink for tropical and boreal forests. These diverging trends were not observed when applying a conventional LULCC dataset, but were also evident in satellite passive microwave estimates of aboveground biomass. These datasets thereby converge on the conclusion that LULCC have had a greater impact on tropical forests than previously estimated, causing an increase and decrease of the contributions of boreal and tropical forests, respectively, to the growing terrestrial carbon sink.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Agreement between the global net terrestrial carbon (C) exchange as estimated by the LPJ-GUESS model with the ESA-CCI dataset and as estimated by the multi-model mean of the GCP.
Fig. 2: Contribution of biomes to AGB.
Fig. 3: Contributions of biomes to the global terrestrial carbon sink for 1992–2015.
Fig. 4: Impact of drivers on the trends in the net terrestrial carbon exchange.
Fig. 5: Comparison between model simulations using different land use and land cover change datasets.

Data availability

Data from the ESA-CCI land cover dataset is freely available from ESA-CCI ( The Köppen climate classification is freely available at The LPJ-GUESS simulated terrestrial carbon exchange estimates, the simulated AGB data, the fractions of woody, herbaceous and bares land, and the annual SMOS L-VOD data are available at The VOD-AGB dataset derived over the period 1993–2012 can be accessed at For the TRENDY data, please see

Code availability

The codes used in the data analysis is available at The codes are: 1) the code used for converting the ESA-CCI land cover to fractions of woody, herbaceous and bares land; 2) the codes used for separating the terrestrial Earth surface into its different biomes; 3) the codes used for partitioning the global-scale mean, trend and interannual variability in the terrestrial carbon sink to the different biomes; and 4) the codes used for the factorial simulations.


  1. 1.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Article  Google Scholar 

  2. 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).

    Article  CAS  Google Scholar 

  5. 5.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    Sellers, P. J., Schimel, D. S., Moore, B., Liu, J. & Eldering, A. Observing carbon cycle–climate feedbacks from space. Proc. Natl Acad. Sci. USA 115, 7860–7868 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 3344 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  13. 13.

    Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).

    Article  Google Scholar 

  14. 14.

    Erb, K.-H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    ESA CCI Land Cover Map (2017).

  16. 16.

    Bontemps, S. et al. Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences 9, 2145–2157 (2012).

    Article  Google Scholar 

  17. 17.

    Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).

    Article  Google Scholar 

  18. 18.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article  Google Scholar 

  19. 19.

    Rodríguez-Fernández, N. J. et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 15, 4627–4645 (2018).

    Article  CAS  Google Scholar 

  20. 20.

    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    Article  Google Scholar 

  21. 21.

    Tian, F. et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat. Ecol. Evol. 2, 1428–1435 (2018).

    Article  Google Scholar 

  22. 22.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article  Google Scholar 

  23. 23.

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  24. 24.

    Zeng, N. et al. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 3, 014002 (2008).

    Article  Google Scholar 

  25. 25.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554–554 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  27. 27.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  CAS  Google Scholar 

  28. 28.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article  Google Scholar 

  29. 29.

    Gifford, R. M. The CO2 fertilising effect—does it occur in the real world? New Phytol. 163, 221–225 (2004).

    Article  Google Scholar 

  30. 30.

    Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).

    Article  Google Scholar 

  31. 31.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).

    Article  CAS  Google Scholar 

  34. 34.

    Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Piao, S., Friedlingstein, P., Ciais, P., Zhou, L. & Chen, A. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 33, L23402 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gaubert, B. et al. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences 16, 117–134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637 (2001).

    Article  Google Scholar 

  42. 42.

    Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).

    Article  Google Scholar 

  43. 43.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).

    Article  Google Scholar 

  44. 44.

    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1,000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    Article  CAS  Google Scholar 

  45. 45.

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plicht, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    Article  CAS  Google Scholar 

  46. 46.

    Lamarque, J.-F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    Article  CAS  Google Scholar 

  47. 47.

    Ahlström, A., Miller, P. A. & Smith, B. Too early to infer a global NPP decline since 2000. Geophys. Res. Lett. 39, L15403 (2012).

    Article  CAS  Google Scholar 

  48. 48.

    Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  49. 49.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    Article  Google Scholar 

  50. 50.

    Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).

    Article  Google Scholar 

  51. 51.

    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

    Article  CAS  Google Scholar 

Download references


This research work was funded by the Swedish National Space Board (Dnr 95/16) (T.T.) and the Danish Council for Independent Research (DFF), grant ID: DFF–6111-00258 (T.T., R.F., S.H. and M.B.). S.H. additionally acknowledges funding from the Belgian Science Policy Office in the frame of the U-TURN project (SR/00/339 and SR/00/366). M.B. was supported by an AXA post-doctoral fellowship. J.-P.W. acknowledges funding from Centre National d’Etudes Spatiales (TOSCA programme) and from the European Space Agency. F.T. was supported by the Marie Skłodowska-Curie grant (project number 746347).

Author information




T.T., R.F., G.S. and S.H. designed the study. T.T., S.H. and R.F. prepared the ESA-CCI data. G.S. conducted the LPJ-GUESS simulations. J.-P.W., L.F. and F.T. prepared SMOS-IC L-VOD data. S.O. and G.S. prepared the LUH2 data. T.T. and G.S. analysed the data. The results were interpreted by T.T., R.F., G.S., S.H., P.C., A.A., J.A. and Z.W. with contributions from all co-authors. The manuscript was drafted by T.T., R.F., G.S., P.C., S.H., F.T., A.A. and M.B. with contributions from all co-authors.

Corresponding author

Correspondence to Torbern Tagesson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, discussions, Figs. 1–11 and Tables 1–9.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tagesson, T., Schurgers, G., Horion, S. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat Ecol Evol 4, 202–209 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing