Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macroevolutionary convergence connects morphological form to ecological function in birds

Abstract

Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70–85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form–function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The avian morphospace.
Fig. 2: Trophic structuring of multidimensional morphospace.
Fig. 3: Partitioning of avian morphospace across trophic levels and niches.
Fig. 4: Scale and context of macroevolutionary convergence in birds.
Fig. 5: Convergent evolutionary trajectories through avian morphospace.
Fig. 6: The global mapping of form to function across birds.

Data availability

All geographical and phylogenetic data are publicly available from www.birdlife.org and www.birdtree.org, respectively. Morphological data and ecological niche assignments are provided in Supplementary Dataset 1.

Code availability

The code to conduct the analyses is available on request from the authors.

References

  1. 1.

    Elton, C. S. Animal Ecology (Macmillan, 1927).

  2. 2.

    Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends Ecol. Evol. 26, 81–87 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lauder, G. V. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J.) 1–18 (Cambridge Univ. Press, 1995).

  7. 7.

    Carroll, S. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Wainwright, P. C. Functional versus morphological diversity in macroevolution. Annu. Rev. Ecol. Evol. Syst. 38, 381–401 (2007).

    Article  Google Scholar 

  9. 9.

    Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article  Google Scholar 

  11. 11.

    Peck, A. L. Aristotle: History of Animals (Harvard Univ. Press, 1970).

  12. 12.

    Cernansky, R. Biodiversity moves beyond counting species. Nature 546, 22–24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Larcombe, M. J., Jordan, G. J., Bryant, D. & Higgins, S. I. The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nat. Commun. 9, 4258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Diaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  16. 16.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article  Google Scholar 

  18. 18.

    Purves, D. et al. Ecosystems: time to model all life on earth. Nature 493, 295–297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Didham, R. K., Leather, S. R. & Basset, Y. Circle the bandwagons: challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conserv. Divers. 9, 1–3 (2016).

    Article  Google Scholar 

  20. 20.

    Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B 371, 20150268 (2016).

    Article  Google Scholar 

  21. 21.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  22. 22.

    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    Article  CAS  Google Scholar 

  23. 23.

    Cohen, J. E. Food Webs and Niche Space (Princeton Univ. Press, 1978).

  24. 24.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shoval, O. et al. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).

    Article  Google Scholar 

  29. 29.

    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article  Google Scholar 

  30. 30.

    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629–1640 (1984).

    Article  Google Scholar 

  32. 32.

    Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. Biol. Sci. 283, 20152013 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Miller, E. T., Wagner, S. K., Harmon, L. J. & Ricklefs, R. E. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189, E14–E30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. Biol. Sci. 286, 20182677 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Navalón, G., Bright, J. A., Marugán‐Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).

    Article  Google Scholar 

  38. 38.

    Bock, W. J. Concepts and methods in ecomorphology. J. Biosci. 19, 403–413 (1994).

    Article  Google Scholar 

  39. 39.

    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).

  40. 40.

    Wilman, W. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article  Google Scholar 

  41. 41.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ricklefs, R. E. & Travis, J. A morphological approach to the study of avian community organization. Auk 97, 321–338 (1980).

    Google Scholar 

  43. 43.

    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge Univ. Press, 1983).

  45. 45.

    Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

  47. 47.

    Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    S̜ekercioğlu, C̜., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (Univ. of Chicago Press, 2016).

  53. 53.

    Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large‐scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ricklefs, R. E. Passerine morphology: external measurements of approximately one‐quarter of passerine bird species. Ecology 98, 1472 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 1993).

  56. 56.

    Burin, G., Kissling, W. D., Guimarães, P. R.Jr., Şekercioğlu, Ç. H. & Quental, T. B. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 7, 11250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    del Hoyo, J, Elliott, A, Sargatal, J, Christie, D. A. & de Juana, E. Handbook of the Birds of the World (Lynx Edicions, 1997).

  58. 58.

    Remsen, J. V. & Robinson, S. K. A classification scheme for foraging behaviour of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).

    Google Scholar 

  59. 59.

    Croxall, J. P. Seabirds: Feeding Ecology and Role in Marine Ecosystems (Cambridge Univ. Press, 1987).

  60. 60.

    Ashmole, N. P. in Avian Biology Vol. 1 (eds Farner, D. S. et al.) 223–286 (Academic Press, 1971).

  61. 61.

    Fitzpatrick, J. W. Form, foraging behavior, and adaptive radiation in the Tyrannidae. Ornithol. Monogr. 36, 447–470 (1985).

    Article  Google Scholar 

  62. 62.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    ArcGIS Desktop: Release 10.3 (Environmental Systems Research Institute, 2014).

  65. 65.

    Breiman, L. Random forests. Mach. Learn. 45, 15–32 (2001).

    Google Scholar 

  66. 66.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  67. 67.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  68. 68.

    Grundler, M. & Rabosky, D. L. Trophic divergence despite morphological convergence in a continental radiation of snakes. Proc. Biol. Sci. 281, 20140413 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article  Google Scholar 

  70. 70.

    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Nosil, P. & Harmon, L. J. in Speciation and Patterns of Diversity (eds Butlin, R. et al.) 127–154 (Cambridge Univ. Press, 2009).

  72. 72.

    Rayner, J. M. V. in Current Ornithology Vol. 5 (ed. Johnston, R. F.) 1–66 (Springer, 1988).

  73. 73.

    Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  75. 75.

    Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank numerous field biologists and explorers who collected and prepared the specimens used in this study. We thank the Natural History Museum, the American Museum of Natural History and 63 other research collections for providing access to specimens. Illustrations are reproduced with permission of Lynx Edicions. Financial support was received from a Royal Society University Research Fellowship (A.L.P.); a PhD studentship funded by the University of Oxford Clarendon Fund and the US–UK Fulbright Commission (C.S.); and Natural Environment Research Council grant nos. NE/I028068/1 and NE/P004512/1 (J.A.T.). Secondary sources of funding are listed in the Supplementary Information, along with a complete list of individuals and institutions that contributed directly to data collection, logistics and specimen access.

Author information

Affiliations

Authors

Contributions

J.A.T. and A.L.P. conceived and coordinated the study. J.A.T., A.L.P., C.S., E.T.M. and U.R. designed the study. C.S., A.L.P., T.P.B., B.G.F., U.R., C.H.T., B.C.W., N.S. and J.A.T. compiled the morphological, ecological and geographical data. A.L.P. led the analyses. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Alex L. Pigot or Joseph A. Tobias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Diagram of linear measurements of avian morphology.

a, Resident frugivorous tropical passerine (fiery-capped manakin, Machaeropterus pyrocephalus) showing four beak measurements: (1) beak length measured from tip to skull along the culmen; (2) beak length measured from the tip to the anterior edge of the nares; (3) beak depth; (4) beak width. b, Insectivorous migratory temperate-zone passerine (redwing, Turdus iliacus) showing five body measurements: (5) tarsus length; (6) wing length from carpal joint to wingtip; (7) secondary length from carpal joint to tip of the outermost secondary; (8) Kipp’s distance, calculated as wing length minus first-secondary length; (9) tail length. Analyses exclude Kipp’s distance, and thus include 8 traits shown here (plus body mass, making 9 traits in total). Illustration by Richard Johnson.

Extended Data Fig. 2 Repeatability of avian morphological trait measurements.

Data points show replicate measurements taken by different researchers on the same museum specimens for a subset of our global dataset (n = 2752 specimens of n = 2523 species). Points falling along the 1:1 line indicate a perfect correspondence between measurers. The % of total trait variance (Var) occurring between measurers within specimens is shown. The number of specimens varies across traits and is indicated in the top left of each plot.

Extended Data Fig. 3 Trait loadings along principal component (PC) dimensions based on all 9 phenotypic traits.

Results are shown for PC axes representing variation in shape, and thereby excluding PC1 which represents variation in body size. Colours indicate the increasing density of species (from yellow to red) on each 2-dimensional plane (n =9,963 species). See Supplementary Table 3 for trait loadings.

Extended Data Fig. 4 Density profiles through multidimensional morphospace.

The relative density of species with distance from the centroid of nine-dimensional morphospace is calculated for concentric shells of 1-unit diameter. Density is shown for all species (n = 9,963) and each trophic niche separately.

Extended Data Fig. 5 Avian trophic niches and foraging niches.

Silhouettes depict archetypal species belonging to (a) nine specialist trophic niches, (b) seven major foraging niches used by terrestrial invertivores, and (c) six major foraging niches used by aquatic predators. Foraging niches for the remaining seven specialist trophic niches are less diverse and are not shown. See Supplementary Table 4 for a full list and description of trophic and foraging niches. Bird silhouettes were generated directly from published illustrations with permission of Lynx Edicions (https://www.hbw.com/) or downloaded from online repositories without restrictions on use: http://phylopic.org/image/6da653ca-1baa-4852-b9db-aff15404cbf7/ http://www.clker.com/cliparts/f/7/9/a/11949848182045168189eagle_01.svg.med.png http://phylopic.org/image/05cd7d8c-6b2c-4b97-b7b8-053559019eeb/.

Extended Data Fig. 6 Classification accuracy (%) using alternative classification algorithms.

Predictions of species trophic levels, trophic niches and foraging niches using (a) Random Forest, (b) Mixture Discriminant Analysis, and (c) Linear Discriminant Analysis for all birds (n = 9,963 species) on the basis of body size (mass), size and beak traits, or the full nine-dimensional morphospace. Stippling indicates improvement in predictive accuracy after omitting omnivores and foraging generalists (see Methods).

Extended Data Fig. 7 Intermediate dimensionality of avian niche space.

Accuracy curves indicate the maximum predictability of (a-b) trophic and (c) foraging niches in morphospaces consisting of different numbers of trait dimensions. Results are shown for a morphospace based on (a,c) standard and (b) phylogenetic principal components analysis. Accuracy is shown for individual niches (colours matching those depicted in Fig. 3) and total niche space (black, DTotal). Points indicate the level of niche dimensionality (D) according to Levene’s index. Horizontal bar shows the mean \(\left( {\bar D} \right)\) and range in dimensionality estimates for each niche.

Extended Data Fig. 8 The dimensionality of avian trophic and foraging niches.

a-b, The identity of the trait dimensions best describing (a) trophic and (b) foraging niches for different levels of dimensionality. c-d, estimates of dimensionality (D) according to Levene’s index for (c) trophic niches and (d) foraging niches. Each niche is given separately, and with all niches combined (‘All’), along with the identity of the principal component (PC) dimensions (coloured squares) that best predict the niche.

Extended Data Fig. 9 Non-random trait packing within avian trophic niches.

a, Phylogenetic distribution of avian trophic niches across the complete avian tree (n = 9,963 species) with species lacking genetic data inserted according to taxonomic constraints41. Tips and internal branches connected by species sharing the same trophic niche are highlighted across the avian evolutionary tree. b, Mean pairwise trait distance between species in each trophic niche (points) is less than expected due to phylogenetic relatedness, based on species with both morphological and genetic data (n = 6,666). Box and whiskers show 50% interquartile range and 95% confidence interval of mean pairwise trait distances expected under an evolutionary null model. This null model incorporates a multi-rate process of Brownian trait evolution whereby rates of evolution can vary both across lineages and over time. Bird silhouettes were generated directly from published illustrations with permission of Lynx Edicions (https://www.hbw.com/) or downloaded from online repositories without restrictions on use: http://phylopic.org/image/6da653ca-1baa-4852-b9db-aff15404cbf7/ http://www.clker.com/cliparts/f/7/9/a/11949848182045168189eagle_01.svg.med.png http://phylopic.org/image/05cd7d8c-6b2c-4b97-b7b8-053559019eeb/.

Extended Data Fig. 10 The distance across morphospace independently evolved by phenotypically matched pairs of avian families.

We calculated the average phenotypic distance evolved by each clade since they last shared a common ancestor with their phenotypically matched family (n = 91 pairs). Distances are expressed in (a) raw morphological units (trait axes scaled to unit variance) and (b) as a proportion of the total span of morphospace. On average, each clade within a matched family pair has independently evolved a distance equivalent to one-third of the total span of morphospace. For comparison, the 9 matched family pairs that are also sister clades (that is each other’s closest relative) have each on average evolved a distance equivalent to only ~10% of the total span of morphospace. Position of letters indicate the average distance evolved by families within sister clades: (A) Cettiidae-Phylloscopidae, (B) Cardinalidae-Thraupidae, (C) Emberizidae-Passerellidae, (D) Phalacrocoracidae-Sulidae, (E) Odontophoridae-Phasianidae, (F) Strigidae-Tytonidae, (G) Ardeidae-Threskiornithidae, (H) Cacatuidae-Psittacidae, (I) Accipitridae-Cathartidae.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–4, Figs. 1–6, acknowledgements and references.

Reporting Summary

Supplementary Dataset 1

Supplementary Database 1: Species morphological PC scores and ecological niche assignments (n = 9,963 species).

Supplementary Dataset 2

Supplementary Database 2: Phenotypically matched family pairs (n = 91 pairs), along with their diet, divergence time, geographic and foraging niche overlap.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pigot, A.L., Sheard, C., Miller, E.T. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol 4, 230–239 (2020). https://doi.org/10.1038/s41559-019-1070-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing