Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

2,100 years of human adaptation to climate change in the High Andes

Abstract

Humid montane forests are challenging environments for human habitation. We used high-resolution fossil pollen, charcoal, diatom and sediment chemistry data from the iconic archaeological setting of Laguna de los Condores, Peru to reconstruct changing land uses and climates in a forested Andean valley. Forest clearance and maize cultivation were initiated during periods of drought, with periods of forest recovery occurring during wetter conditions. Between ad 800 and 1000 forest regrowth was evident, but this trend was reversed between ad 1000 and 1200 as drier conditions coincided with renewed land clearance, the establishment of a permanent village and the use of cliffs overlooking the lake as a burial site. By ad 1230 forests had regrown in the valley and maize cultivation was greatly reduced. An elevational transect investigating regional patterns showed a parallel, but earlier, history of reduced maize cultivation and forest regeneration at mid-elevation. However, a lowland site showed continuous maize agriculture until European conquest but very little subsequent change in forest cover. Divergent, climate-sensitive landscape histories do not support categorical assessments that forest regrowth and peak carbon sequestration coincided with European arrival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The location of Laguna de los Condores, Pomacochas and Sauce, Peru.
Fig. 2: The abundance of selected fossil pollen taxa from Laguna de los Condores, Peru, plotted against time.
Fig. 3: Decadal-scale climate oscillations, human disturbance and forest impacts at Laguna de los Condores, Peru.
Fig. 4: Centennial-scale climate change and changing land use at Laguna de los Condores, Peru.
Fig. 5: Pollen representation across an elevational gradient through Chachapoya, Peru.
Fig. 6: The elevational gradient showing hypothesized changes in ground-level cloud immersion at Sauce, Pomacochas and Condores.

Data availability

The datasets generated from this study are available through NEOTOMA Paleoecology Database (https://neotomadb.org/), which include pollen, charcoal, diatom, loss-on-ignition (carbonate) and XRF (Ti, Si and Ca) data visualized in Figs. 24.

References

  1. 1.

    Lanning, E. P. Peru before the Incas (Prentice-Hall, 1967).

  2. 2.

    Oficina Nacional de Evaluación de Recursos Naturales (Mapa Ecológico del Perú, 1976).

  3. 3.

    Steward, J. H. Handbook of South American Indians, Vol. 3: The Tropical Forest Tribes (Smithsonian Institution, 1948).

  4. 4.

    Church, W. & Álvarez, L. V. Gran Pajatén y su contexto en el paisaje prehispánico Pataz-Abiseo. Bol. Arqueol. PUCP 23, 57–93 (2018).

    Google Scholar 

  5. 5.

    Church, W. B. & von Hagen, A. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 903–926 (Springer, 2008).

  6. 6.

    Guengerich, A. & Church, W. B. Una mirada hacia el futuro: nuevas direcciones en la arqueología de los Andes nororientales. Bol. Arqueol. PUCP 23, 313–334 (2018).

    Google Scholar 

  7. 7.

    Bush, M. B., Mosblech, N. A. S. & Church, W. Climate change and the agricultural history of a mid-elevation Andean montane forest. Holocene 25, 1522–1532 (2015).

    Google Scholar 

  8. 8.

    Loughlin, N. J., Gosling, W. D., Mothes, P. & Montoya, E. Ecological consequences of post-Columbian indigenous depopulation in the Andean–Amazonian corridor. Nat. Ecol. Evol. 2, 1233 (2018).

    PubMed  Google Scholar 

  9. 9.

    Schiferl, J. D., Bush, M. B., Silman, M. R. & Urrego, D. H. Vegetation responses to late Holocene climate changes in an Andean forest. Quat. Res. 89, 60–74 (2018).

    Google Scholar 

  10. 10.

    Bonavia, D. in The Inca World: The Development of Pre-Columbian Peru. (ed. Laurencich Minelli, L.) 121–131 (Univ. Oklahoma Press, 2000).

  11. 11.

    Dull, R. A. et al. The columbian encounter and the little ice age: abrupt land use change, fire, and greenhouse forcing. Ann. Assoc. Am. Geogr. 100, 755–771 (2010).

    Google Scholar 

  12. 12.

    Nevle, R., Bird, D., Ruddiman, W. & Dull, R. Neotropical human–landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011).

    Google Scholar 

  13. 13.

    Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the european arrival and great dying in the americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

    Google Scholar 

  14. 14.

    Fehren-Schmitz, L., Harkins, K. M. & Llamas, B. A paleogenetic perspective on the early population history of the high altitude Andes. Quat. Int. 461, 25–33 (2017).

    Google Scholar 

  15. 15.

    Young, K. R. Andean land use and biodiversity: Humanized landscapes in a time of change. Ann. Bot. Gard. 96, 492–507 (2009).

    Google Scholar 

  16. 16.

    Church, W. Early occupations at Gran Pajatén, Peru. Andean Past 4, 281–318 (1994).

    Google Scholar 

  17. 17.

    Gnecco, C. & Aceituno, J. in Paleoindian Archaeology: A Hemispheric Perspective (eds Morrow, J. E. & Gnecco, C.) 86–104 (Univ. Florida Press, 2006).

  18. 18.

    Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L. & Vuille, M. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quat. Sci. Rev. 75, 1–10 (2013).

    Google Scholar 

  19. 19.

    Bird, B. W. et al. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc. Natl Acad. Sci. USA 108, 8583–8588 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Apaéstegui, J. et al. Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1,600 years. Clim. Past 10, 1967–1981 (2014).

    Google Scholar 

  21. 21.

    Binford, M. W. et al. Climate variation and the rise and fall of an Andean civilization. Quat. Res. 47, 235–248 (1997).

    Google Scholar 

  22. 22.

    Meggers, B. J. Archaeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Nat. Clim. Change 28, 321–338 (1994).

    CAS  Google Scholar 

  23. 23.

    Williams, P. R. Rethinking disaster-induced collapse in the demise of the Andean highland states: Wari and Tiwanaku. World Archaeol. 33, 361–374 (2002).

    Google Scholar 

  24. 24.

    Erickson, C. L. Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73, 634 (1999).

    Google Scholar 

  25. 25.

    Neves, E. G. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 359–379 (Springer, 2008).

  26. 26.

    Dillehay, T. D., Eling, H. H. Jr. & Rossen, J. Preceramic irrigation canals in the Peruvian Andes. Proc. Natl Acad. Sci. USA 102, 17241–17244 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Erickson, C. L. Raised field agriculture in the Lake Titicaca basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).

    Google Scholar 

  28. 28.

    Mitchell, W. P. On terracing in the Andes. Curr. Anthropol. 26, 288–289 (1985).

    Google Scholar 

  29. 29.

    Sandweiss, D. H. et al. Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, 603–606 (2001).

    Google Scholar 

  30. 30.

    Schreiber, K. J. in Wari, Lords of the Ancient Andes (eds Bergh, S.E. & Castillo, L.J.) 31–45 (Thames & Hudson, 2012).

  31. 31.

    Dillehay, T. D. & Kolata, A. Long-term human response to uncertain environmental conditions in the Andes. Proc. Natl Acad. Sci. USA 101, 4325–4330 (2004).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cherkinsky, A. & Urton, G. Radiocarbon chronology of Andean khipus. Open J. Archaeom. 2, 32–36 (2014).

    Google Scholar 

  33. 33.

    Wild, E. M., Guillen, S., Kutschera, W., Seidler, H. & Steier, P. Radiocarbon dating of the Peruvian Chachapoya/Inca site at the Laguna de los Condores. Nucl. Instrum. Methods Phys. Res. B 259, 378–383 (2007).

    CAS  Google Scholar 

  34. 34.

    Guillén, S. in Chachapoyas: El Reino Perdido (eds González, E. et al.) 344–387 (AFP lntegra, 2002).

  35. 35.

    von Hagen, A. in Chachapoyas: El Reino Perdido (eds González, E. et al.) 254–265 (AFP lntegra, 2002).

  36. 36.

    Stansell, N. D. et al. Proglacial lake sediment records reveal Holocene climate changes in the Venezuelan Andes. Quat. Sci. Rev. 89, 44–55 (2014).

    Google Scholar 

  37. 37.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., P.G., J. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  38. 38.

    Colose, C. M., LeGrande, A. N. & Vuille, M. The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model. Clim. Past 12, 961–979 (2016).

    Google Scholar 

  39. 39.

    Sagredo, E. A. et al. Equilibrium line altitudes along the Andes during the Last millennium: Paleoclimatic implications. Holocene 27, 1019–1033 (2017).

    Google Scholar 

  40. 40.

    van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G. & Kroon, D. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett. 275, 54–60 (2008).

    Google Scholar 

  41. 41.

    Hardwick, S. R. Interactions between Vegetation and Microclimate in a Heterogeneous Tropical Landscape. PhD thesis, Imperial College London (2015).

  42. 42.

    Lippok, D. et al. Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. For. Ecol. Manage. 295, 69–76 (2013).

    Google Scholar 

  43. 43.

    Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 9, 034002 (2014).

    Google Scholar 

  44. 44.

    Stirling, C., Rodrigo, V. & Emberru, J. Chilling and photosynthetic productivity of field grown maize (Zea mays); changes in the parameters of the light-response curve, canopy leaf CO2 assimilation rate and crop radiation-use efficiency. Photosynth. Res. 38, 125–133 (1993).

    CAS  PubMed  Google Scholar 

  45. 45.

    Garreaud, R., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195 (2009).

    Google Scholar 

  46. 46.

    Rapp, J. M. & Silman, M. R. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim. Res. 55, 17–32 (2012).

    Google Scholar 

  47. 47.

    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Letts, M. G. & Mulligan, M. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J. Trop. Ecol. 21, 549–557 (2005).

    Google Scholar 

  49. 49.

    Weng, C., Bush, M. B. & Silman, M. R. An analysis of modern pollen rain on an elevational gradient in southern Peru. J. Trop. Ecol. 20, 113–124 (2004).

    Google Scholar 

  50. 50.

    Urrego, D. H., Silman, M. R., Correa-Metrio, A. & Bush, M. B. Pollen–vegetation relationships along steep climatic gradients in western Amazonia. J. Veg. Sci. 22, 795–806 (2011).

    Google Scholar 

  51. 51.

    Grabandt, R. A. J. Pollen rain in relation to arboreal vegetation in the Columbian Cordillera Oriental. Rev. Palaeobot. Palynol. 29, 65–147 (1980).

    Google Scholar 

  52. 52.

    Whitney, B. S. et al. Constraining pollen-based estimates of forest cover in the Amazon: a simulation approach. Holocene 29, 262–270 (2019).

    Google Scholar 

  53. 53.

    Szczepocka, E. & Szulc, B. The use of benthic diatoms in estimating water quality of variously polluted rivers. Oceanol. Hydrobiol. Stud. 38, 17–26 (2009).

    CAS  Google Scholar 

  54. 54.

    Michelutti, N. et al. Climate change forces new ecological states in tropical Andean lakes. PLoS ONE 10, e0115338 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sayer, C., Roberts, N., Sadler, J., David, C. & Wade, P. Biodiversity changes in a shallow lake ecosystem: a multi‐proxy palaeolimnological analysis. J. Biogeogr. 26, 97–114 (1999).

    Google Scholar 

  56. 56.

    Cremer, H. & Wagner, B. Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can. J. Bot. 82, 1744–1757 (2004).

    Google Scholar 

  57. 57.

    Lane, C. S., Cummings, K. E. & Clark, J. J. Maize pollen deposition in modern lake sediments: a case study from Northeastern Wisconsin. Rev. Palaeobot. Palynol. 159, 177–187 (2010).

    Google Scholar 

  58. 58.

    Piperno, D. R., Clary, K. H., Cooke, R. G., Ranere, A. J. & Weiland, D. Preceramic maize in central panama: phytolith and pollen evidence. Am. Anthropol. 87, 871–878 (1985).

    Google Scholar 

  59. 59.

    Bush, M. B., Piperno, D. R. & Colinvaux, P. A. A 6,000-year history of Amazonian maize cultivation. Nature 340, 303–305 (1989).

    Google Scholar 

  60. 60.

    Haberzettl, T. et al. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17, 297–310 (2007).

    Google Scholar 

  61. 61.

    Kylander, M. E., Klaminder, J., Wohlfarth, B. & Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50, 57–70 (2013).

    Google Scholar 

  62. 62.

    Jouve, G. et al. Microsedimentological characterization using image analysis and μ-XRF as indicators of sedimentary processes and climate changes during Lateglacial at Laguna Potrok Aike, Santa Cruz, Argentina. Quat. Sci. Rev. 71, 191–204 (2013).

    Google Scholar 

  63. 63.

    Sulca, J., Takahashi, K., Espinoza, J. C., Vuille, M. & Lavado‐Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 38, 420–435 (2018).

    Google Scholar 

  64. 64.

    Schreiber, K. J. in Foundations of Power in the Prehispanic Andes, Vol. 14 (eds Vaughn, K. et al.) 131–150 (American Anthropological Association, 2005).

  65. 65.

    Watanabe, S. in Nuevas Perspectivas en la Organización Política Wari (eds Giersz, M. & Makowski, K.) 263–286 (Centro de Estudios Precolumbinos de la Univ. Varsovia, 2016).

  66. 66.

    Schjellerup, I. in Agricultural and Pastoral Landscapes in Pre-Industrial Society: Choices, Stability and Change, Vol. 3 (eds Retamero, F., Schjellerup, I. & Davies, A.) 187–200 (Oxbow Books, 2014).

  67. 67.

    von Hagen, A. in Andean Archaeology II: Art Landscape and Society (eds Isbell, W. & Silverman, H.) 137–156 (Kluwer, 2002).

  68. 68.

    von Hagen, A. & Guillén, S. Tombs with a view. Archaeology 51, 48–54 (1998).

    Google Scholar 

  69. 69.

    Contreras, D. A. in The Archaeology of Human–Environment Interactions (ed. Contreras, D. A.) 17–36 (Routledge, 2016).

  70. 70.

    Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232 (2016).

    CAS  PubMed  Google Scholar 

  71. 71.

    McMichael, C. N. H. & Bush, M. B. Spatiotemporal patterns of pre-Columbian people in Amazonia. Quat. Res. 92, 53–69 (2019).

    Google Scholar 

  72. 72.

    Bush, M. B., Correa‐Metrio, A., Woesik, R., Shadik, C. R. & McMichael, C. N. Human disturbance amplifies Amazonian El Niño–Southern Oscillation signal. Glob. Change Biol. 23, 3181–3192 (2017).

    Google Scholar 

  73. 73.

    Bush, M. B. et al. A 6,900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).

    Google Scholar 

  74. 74.

    Bush, M. B. et al. A 17,000-year history of Andean climatic and vegetation change from Laguna de Chochos, Peru. J. Quat. Sci. 20, 703–714 (2005).

    Google Scholar 

  75. 75.

    Heckenberger, M. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

    CAS  PubMed  Google Scholar 

  76. 76.

    McMichael, C. et al. Sparse pre-Columbian human habitation in western Amazonia. Science 336, 1429–1431 (2012).

    CAS  PubMed  Google Scholar 

  77. 77.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  78. 78.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  79. 79.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

    CAS  Google Scholar 

  80. 80.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C 57, 399–418 (2008).

    Google Scholar 

  81. 81.

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).

    Google Scholar 

  82. 82.

    Richter, T. O. et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. Geol. Soc. Lond. 267, 39–50 (2006).

    CAS  Google Scholar 

  83. 83.

    Molloy, J. L. & Sieber, J. R. Classification of microheterogeneity in solid samples using µXRF. Anal. Bioanal. Chem. 392, 995–1001 (2008).

    CAS  PubMed  Google Scholar 

  84. 84.

    Oksanen, J. et al. vegan: Community Ecology Package. R version 2.9-9 (R Foundation for Statistical Computing, 2013).

  85. 85.

    Heiri, O., Lotter, A. F. & Lemcke, G. Loss-ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001).

    Google Scholar 

  86. 86.

    Matthews-Bird, F., Valencia, B. G., Church, W., Peterson, L. C. & Bush, M. A 2,000-year history of disturbance and recovery at a sacred site in Peru’s northeastern cloud forest. Holocene 27, 1707–1719 (2017).

    Google Scholar 

  87. 87.

    Battarbee, R. W. in Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).

  88. 88.

    Lange Bertalot, H. Tropical Diatoms of South America I. Iconographia Diatomologica, Vol. 5 (Koeltz Scientific Books, 1998).

  89. 89.

    Lange Bertalot, H. Diatoms of the Andes From Venezuela to Patagonia/Tierra del Fuego, Vol. 9 (Koeltz Scientific Books, 2000).

  90. 90.

    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spore 13, 615–621 (1971).

    Google Scholar 

  91. 91.

    Faegri, K. & Iversen, J. Textbook of Pollen Analysis 4th edn, 328 (Wiley, 1989).

  92. 92.

    Bush, M. B. & Weng, C. Introducing a new (freeware) tool for palynology. J. Biogeogr. 34, 377–380 (2007).

    Google Scholar 

  93. 93.

    Hooghiemstra, H. Vegetational and Climatic History of the High Plain of Bogota, Colombia. Dissertaci ones Botanicae 79 (J. Cramer, 1984).

  94. 94.

    Grimm, E. Tilia software v.1.7.16 (Illinois State Museum, 2011).

  95. 95.

    Juggins, S. C2 Version 1.5: Software for ecological and palaeoecological data analysis and visualisation (Newcastle University, 2007).

  96. 96.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the community of Leymebamba for allowing us access to Lake Condores, and to archaeologists S. Guillén and A. von Hagen who have provided the foundational work on the mortuaries and Llaqtacocha. This work was funded by grants from the National Aeronautics and Space Administration (grant no. NNX14AD31G), the National Science Foundation (grant no. EAR1338694 and 1624207) and National Geographic Society (grant no. 8763-10) to M.B.B.

Author information

Affiliations

Authors

Contributions

C.M.Å., F.M.-B., M.B., C.-J.F., L.C.P. and W.B.C. performed research. C.M.Å., F.M.-B., L.C.P. and M.B.B. analysed data. C.M.Å., F.M.-B., L.C.P., W.B.C., B.G.V. and M.B.B. wrote the paper. M.B.B. designed the research project. M.B.B. and B.G.V. conducted the field project.

Corresponding author

Correspondence to Christine M. Åkesson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Age-depth model of sediments from Laguna de los Condores, Peru.

Age-depth model of sediments from Laguna de los Condores, Peru. The age-depth model was calibrated using 14C dates (Supplementary Table 1), Bacon77, and the IntCal13 calibration curve79.

Extended Data Fig. 2 CONISS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site.

CONISS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site.

Extended Data Fig. 3 Fossil diatom abundances (%) of Laguna de los Condores, Peru.

Fossil diatom abundances (%) of Laguna de los Condores, Peru86. Only taxa with a >5% total abundance are shown.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–3, Discussion and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Åkesson, C.M., Matthews-Bird, F., Bitting, M. et al. 2,100 years of human adaptation to climate change in the High Andes. Nat Ecol Evol 4, 66–74 (2020). https://doi.org/10.1038/s41559-019-1056-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing