Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae

Abstract

Amniotes include mammals, reptiles and birds, representing 75% of extant vertebrate species on land. They originated around 318 million years ago in the early Late Carboniferous and their early fossil record is central to understanding the expansion of vertebrates in terrestrial ecosystems. We present a phylogenetic hypothesis that challenges the widely accepted consensus about early amniote evolution, based on parsimony analysis and Bayesian inference of a new morphological dataset. We find a reduced membership of the mammalian stem lineage, which excludes varanopids. This implies that evolutionary turnover of the mammalian stem lineage during the Early–Middle Permian transition (273 million years ago) was more abrupt than has previously been recognized. We also find that Parareptilia are nested within Diapsida. This suggests that temporal fenestration, a key structural innovation with important functional implications, evolved fewer times than generally thought, but showed highly variable morphology among early reptiles after its initial origin. Our phylogeny also addresses controversies over the affinities of mesosaurids, the earliest known aquatic amniotes, which we recover as early diverging parareptiles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Maximum clade credibility tree recovered from Bayesian analysis using the time-calibrated FBD model.
Fig. 2: Phylogeny of major clades of early amniotes, showing two origins of temporal fenestration in synapsids (green) and reptiles (magenta).
Fig. 3: Phylogeny of early reptiles, showing changes in temporal fenestration.
Fig. 4: Phylogeny of major clades of early amniotes showing wholesale turnover of the mammalian total group (Synapsida) during the Early–Middle Permian transition.

Data availability

The data used in this study, including the character list, character/taxon matrix, full taxon list with sources and missing data metrics, age range notes for the FBD analysis and the NEXUS and Bayesian scripts have been archived and are available via Dryad online data storage89. All other data supporting the findings of this study are available in the Supplementary Information.

References

  1. 1.

    Gauthier, J., Kluge, A. G. & Rowe, T. Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209 (1988).

    Google Scholar 

  2. 2.

    Benton, M. J. Classification and phylogeny of the diapsid reptiles. Zool. J. Linn. Soc. 84, 97–164 (1985).

    Google Scholar 

  3. 3.

    Laurin, M. & Reisz, R. R. A re-evaluation of early amniote phylogeny. Zool. J. Linn. Soc. 113, 165–223 (1995).

    Google Scholar 

  4. 4.

    Tsuji, L. A. & Müller, J. Assembling the history of the Parareptilia: phylogeny, diversification, and a new definition of the clade. Fossil Record 12, 71–81 (2009).

    Google Scholar 

  5. 5.

    Bickelmann, C., Müller, J. & Reisz, R. R. The enigmatic diapsid Acerosodontosaurus piveteaui (Reptilia: Neodiapsida) from the Upper Permian of Madagascar and the paraphyly of ‘younginiform’ reptiles. Can. J. Earth Sci. 46, 651–661 (2009).

    Google Scholar 

  6. 6.

    Reisz, R. R., Leblanc, A. R., Sidor, C. A., Scott, D. & May, W. A new captorhinid reptile from the Lower Permian of Oklahoma showing remarkable dental and mandibular convergence with microsaurian tetrapods. Sci. Nat. 102, 50 (2015).

    CAS  Google Scholar 

  7. 7.

    Brocklehurst, N., Reisz, R. R., Fernandez, V. & Fröbisch, J. A re-description of ‘Mycterosaurus’ smithae, an Early Permian eothyridid, and its impact on the phylogeny of pelycosaurian-grade synapsids. PloS ONE 11, e0156810 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hill, R. V. Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. Syst. Biol. 54, 530–547 (2005).

    PubMed  Google Scholar 

  9. 9.

    Laurin, M. & Piñeiro, G. H. A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. Front. Earth Sci. 5, 88 (2017).

    Google Scholar 

  10. 10.

    MacDougall, M. J. et al. Commentary: a reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. Front. Earth Sci. 6, 90 (2018).

    Google Scholar 

  11. 11.

    Williston, S. W. Osteology of the Reptiles (Harvard Univ. Press, 1925).

  12. 12.

    Spindler, F. et al. First arboreal ‘pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ 92, 315–364 (2018).

    Google Scholar 

  13. 13.

    Frazzetta, T. H. Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls. J. Morphol. 125, 145–157 (1968).

    CAS  PubMed  Google Scholar 

  14. 14.

    Werneburg, I. Functional categories and ontogenetic origin of temporal skull openings in amniotes. Front. Earth Sci. 7, 13 (2019).

    Google Scholar 

  15. 15.

    Tarsitano, S. F., Oelofsen, B., Frey, E. & Riess, J. The origin of temporal fenestrae. S. Afr. J. Sci. 97, 334–336 (2001).

    Google Scholar 

  16. 16.

    Romer, A. S. Osteology of the Reptiles (Univ. of Chicago Press, 1956).

  17. 17.

    Olson, E. C. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana Geol. 11, 1–53 (1947).

    Google Scholar 

  18. 18.

    Modesto, S. P., Scott, D. M. & Reisz, R. R. A new parareptile with temporal fenestration from the Middle Permian of South Africa. Can. J. Earth Sci. 46, 9–20 (2009).

    Google Scholar 

  19. 19.

    Reisz, R. R., MacDougall, M. J. & Modesto, S. P. A new species of the parareptile genus Delorhynchus, based on articulated skeletal remains from Richards Spur, Lower Permian of Oklahoma. J. Vertebr. Paleontol. 34, 1033–1043 (2014).

    Google Scholar 

  20. 20.

    Tsuji, L. A., Müller, J. & Reisz, R. R. Microleter mckinzieorum gen. et sp. nov. from the Lower Permian of Oklahoma: the basalmost parareptile from Laurasia. J. Syst. Palaeontol. 8, 245–255 (2010).

    Google Scholar 

  21. 21.

    Field, D. J. et al. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol. Dev. 16, 189–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chiari, Y., Cahais, V., Galtier, N. & Delsuc, F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bever, G. S., Lyson, T. R., Field, D. J. & Bhullar, B. A. S. Evolutionary origin of the turtle skull. Nature 525, 239–242 (2015).

    Google Scholar 

  24. 24.

    deBraga, M. & Rieppel, O. Reptile phylogeny and the interrelationships of turtles. Zool. J. Linn. Soc. 120, 281–354 (1997).

    Google Scholar 

  25. 25.

    MacDougall, M. J. & Reisz, R. R. The first record of a nyctiphruretid parareptile from the Early Permian of North America, with a discussion of parareptilian temporal fenestration. Zool. J. Linn. Soc. 172, 616–630 (2014).

    Google Scholar 

  26. 26.

    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).

    PubMed  Google Scholar 

  27. 27.

    Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18.1.1FC, 1–106 (2015).

  28. 28.

    Blair, J. E. & Hedges, S. B. Molecular phylogeny and divergence times of deuterostome animals. Mol. Biol. Evol. 22, 2275–2284 (2005).

    CAS  PubMed  Google Scholar 

  29. 29.

    Modesto, S. P. et al. The oldest parareptile and the early diversification of reptiles. Proc. R. Soc. B 282, 20141912 (2015).

    PubMed  Google Scholar 

  30. 30.

    Romer, A. S. & Price, L. I. Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap. 28, 1–534 (1940).

    Google Scholar 

  31. 31.

    Müller, J. Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften 90, 473–476 (2003).

    PubMed  Google Scholar 

  32. 32.

    Reisz, R. R., Berman, D. S. & Scott, D. The anatomy and relationships of the Lower Permian reptile Araeoscelis. J. Verteb. Paleontol. 4, 57–67 (1984).

    Google Scholar 

  33. 33.

    Reisz, R. R., Modesto, S. P. & Scott, D. M. A new Early Permian reptile and its significance in early diapsid evolution. Proc. R. Soc. B 278, 3731–3737 (2011).

    PubMed  Google Scholar 

  34. 34.

    Reisz, R. R. A Diapsid Reptile from the Pennsylvanian of Kansas special publication No. 7; 1–74 (Museum of Natural History, Univ. of Kansas, 1981).

  35. 35.

    Berman, D. S., Reisz, R. R., Bolt, J. R. & Scott, D. The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria, Ophiacodontidae) from the Early Permian of Texas and Oklahoma. Ann. Carnegie Mus. 64, 99–133 (1995).

    Google Scholar 

  36. 36.

    Haridy, Y., MacDougall, M. J., Scott, D. & Reisz, R. R. Ontogenetic change in the temporal region of the Early Permian parareptile Delorhynchus cifellii and the implications for closure of the temporal fenestra in amniotes. PloS ONE 11, e0166819 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schaerlaeken, V., Herrel, A., Aerts, P. & Ross, C. F. The functional significance of the lower temporal bar in Sphenodon punctatus. J. Exp. Biol. 211, 3908–3914 (2008).

    PubMed  Google Scholar 

  38. 38.

    Reisz, R. R. & Laurin, M. Owenetta and the origin of turtles. Nature 349, 324–326 (1991).

    Google Scholar 

  39. 39.

    Lee, M. S. Correlated progression and the origin of turtles. Nature 379, 812–815 (1996).

    Google Scholar 

  40. 40.

    Rieppel, O. & Reisz, R. R. The origin and early evolution of turtles. Annu. Rev. Ecol. Syst. 30, 1–22 (1999).

    Google Scholar 

  41. 41.

    Gow, C. E. & de Klerk, B. First record of Eunotosaurus (Amniota: Parareptilia) from the Eastern Cape. Palaeont. Afr. 34, 27–31 (1997).

    Google Scholar 

  42. 42.

    Modesto, S. P. Eunotosaurus africanus and the Gondwanan ancestry of anapsid reptiles. Palaeont. Afr. 36, 15–20 (2000).

    Google Scholar 

  43. 43.

    Brocklehurst, N., Day, M. O., Rubidge, B. S. & Fröbisch, J. Olson’s extinction and the latitudinal biodiversity gradient of tetrapods in the Permian. Proc. R. Soc. B 284, 20170231 (2017).

    PubMed  Google Scholar 

  44. 44.

    Kemp, T. S. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. J. Evol. Biol. 19, 1231–1247 (2006).

    CAS  PubMed  Google Scholar 

  45. 45.

    Sidor, C. A. et al. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature 434, 886–889 (2005).

    Google Scholar 

  46. 46.

    Benson, R. B. & Upchurch, P. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41, 43–46 (2013).

    Google Scholar 

  47. 47.

    Pardo, J. D., Small, B. J., Milner, A. R. & Huttenlocker, A. K. Carboniferous–Permian climate change constrained early land vertebrate radiations. Nat. Ecol. Evol. 3, 200–206 (2019).

    PubMed  Google Scholar 

  48. 48.

    Laurin, M. & Reisz, R. R. The osteology and relationships of Tetraceratops insignis, the oldest known therapsid. J. Vertebr. Paleontol. 16, 95–102 (1996).

    Google Scholar 

  49. 49.

    Amson, E. & Laurin, M. On the affinities of Tetraceratops insignis, an Early Permian synapsid. Acta Palaeontol. Pol. 56, 301–313 (2011).

    Google Scholar 

  50. 50.

    Spindler, F. The Basal Sphenacodontia—Systematic Revision and Evolutionary Implications. PhD thesis, Freiberg Univ. of Mining and Technology (2015).

  51. 51.

    Conrad, J. & Sidor, C. Re‐evaluation of Tetraceratops insignis (Synapsida: Sphenacodontia). J. Vertebr. Paleontol. 21, 42A (2001).

  52. 52.

    Modesto, S. P., Smith, R. M., Campione, N. E. & Reisz, R. R. The last ‘pelycosaur’: a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften 98, 1027–1034 (2011).

    CAS  PubMed  Google Scholar 

  53. 53.

    Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 13, 141–145 (1998).

    CAS  PubMed  Google Scholar 

  54. 54.

    Janis, C. M. & Keller, J. C. Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontol. Pol. 46, 137–170 (2001).

    Google Scholar 

  55. 55.

    Wright, A. M. & Hillis, D. M. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9, e109210 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Puttick, M. N. et al. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proc. R. Soc. B 284, 20162290 (2017).

    PubMed  Google Scholar 

  57. 57.

    Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    O’Reilly, J. E., Puttick, M. N., Pisani, D. & Donoghue, P. C. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology 61, 105–118 (2018).

    PubMed  Google Scholar 

  59. 59.

    Klembara, J., Clack, J. A., Milner, A. R. & Ruta, M. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. J. Vertebr. Paleontol. 34, 774–792 (2014).

    Google Scholar 

  60. 60.

    Brinkman, D. & Eberth, D. A. The interrelationships of pelycosaurs. Breviora 473, 1–35 (Museum of Comparative Zoology, Harvard Univ., 1983).

  61. 61.

    Reisz, R. R. Handbook of Paleoherpetology: Pelycosauria (Gustav Fischer Verlag, 1986).

  62. 62.

    Reisz, R. R., Berman, D. S. & Scott, D. The cranial anatomy and relationships of Secodontosaurus, an unusual mammal-like reptile (Synapsida: Sphenacodontidae) from the Early Permian of Texas. Zool. J. Linn. Soc. 104, 127–184 (1992).

    Google Scholar 

  63. 63.

    Modesto, S. P. The skull of the herbivorous synapsid Edaphosaurus boanerges from the Lower Permian of Texas. Palaeontology 38, 213–239 (1995).

    Google Scholar 

  64. 64.

    Reisz, R. R. & Dilkes, D. W. Archaeovenator hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the Upper Carboniferous of Kansas. Can. J. Earth Sci. 40, 667–678 (2003).

    Google Scholar 

  65. 65.

    Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T. & Schweiss, D. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Nahe Basin, Germany. Acta Palaeontol. Pol. 56, 113–120 (2011).

    Google Scholar 

  66. 66.

    Benson, R. B. Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies. J. Syst. Palaeontol. 10, 601–624 (2012).

    Google Scholar 

  67. 67.

    deBraga, M. & Reisz, R. R. The Early Permian reptile Acleistorhinus pteroticus and its phylogenetic position. J. Vertebr. Paleontol. 16, 384–395 (1996).

    Google Scholar 

  68. 68.

    Reisz, R. R., Müller, J., Tsuji, L. & Scott, D. The cranial osteology of Belebey vegrandis (Parareptilia: Bolosauridae), from the Middle Permian of Russia, and its bearing on reptilian evolution. Zool. J. Linn. Soc. 151, 191–214 (2007).

    Google Scholar 

  69. 69.

    MacDougall, M. J., Scott, D., Modesto, S. P., Williams, S. A. & Reisz, R. R. New material of the reptile Colobomycter pholeter (Parareptilia: Lanthanosuchoidea) and the diversity of reptiles during the Early Permian (Cisuralian). Zool. J. Linn. Soc. 180, 661–671 (2017).

    Google Scholar 

  70. 70.

    Schoch, R. R. & Sues, H. D. Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton. J. Syst. Palaeontol. 16, 927–965 (2018).

    Google Scholar 

  71. 71.

    Carroll, R. L. & Currie, P. J. in Origins of the Higher Groups of Tetrapods: Controversy and Consensus (eds Schultze, H.-P. & Trueb, L.) 354–424 (Comstock Publishing Associates, 1991).

  72. 72.

    Müller, J. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G. et al.) 379–408 (F. Pfeil, 2004).

  73. 73.

    Müller, J. & Reisz, R. R. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Syst. Biol. 55, 503–511 (2006).

    PubMed  Google Scholar 

  74. 74.

    Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Heaton, M. J. & Reisz, R. R. Phylogenetic relationships of captorhinomorph reptiles. Can. J. Earth Sci. 23, 402–418 (1986).

    Google Scholar 

  76. 76.

    Dodick, J. T. & Modesto, S. P. The cranial anatomy of the captorhinid reptile Labidosaurikos meachami from the Lower Permian of Oklahoma. Palaeontology 38, 687 (1995).

    Google Scholar 

  77. 77.

    Modesto, S. P., Scott, D. M., Berman, D. S., Müller, J. & Reisz, R. R. The skull and the palaeoecological significance of Labidosaurus hamatus, a captorhinid reptile from the Lower Permian of Texas. Zoolo. J. Linn. Soc. 149, 237–262 (2007).

    Google Scholar 

  78. 78.

    Modesto, S. P., Scott, D. & Reisz, R. R. A new small captorhinid reptile from the lower Permian of Oklahoma and resource partitioning among small captorhinids in the Richards Spur fauna. Pap. Palaeontol. 4, 293–307 (2018).

    Google Scholar 

  79. 79.

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Google Scholar 

  80. 80.

    Swofford, D. L. PAUP* ver 4.0. b10. Phylogenetic Analysis Using Parsimony and Other Methods (Sinauer Associates, 2003).

  81. 81.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Yang, Z. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10, 1396–1401 (1993).

    CAS  PubMed  Google Scholar 

  83. 83.

    Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–340 (2010).

    PubMed  Google Scholar 

  84. 84.

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad.Sci. USA 111, E2957–E2966 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Templeton, A. R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37, 221–244 (1983).

    CAS  PubMed  Google Scholar 

  86. 86.

    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bergsten, J., Nilsson, A. N. & Ronquist, F. Bayesian tests of topology hypotheses with an example from diving beetles. Syst. Biol. 62, 660–673 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Google Scholar 

  89. 89.

    Ford, D. P. & Benson, R. B. J. The Phylogeny of Early Amniotes and the Affinities of Parareptilia and Varanopidae (Dryad Digital Repository, 2019); https://doi.org/10.5061/dryad.t4b8gthx8

  90. 90.

    Klembara, J., Berman, D. S., Henrici, A. C. & Cernanský, A. New structures and reconstructions of the skull of the seymouriamorph Seymouria sanjuanensis Vaughn. Ann. Carnegie Mus. 74, 217–225 (2005).

    Google Scholar 

  91. 91.

    Berman, D. S., Reisz, R. R. & Scott, D. Redescription of the skull of Limnoscelis paludis Williston (Diadectomorpha: Limnoscelidae) from the Pennsylvanian of Canon del Cobre, northern New Mexico. Bull. N. M. Mus. Nat. Hist. Sci. 49, 185–210 (2010).

    Google Scholar 

  92. 92.

    Reisz, R. R., Godfrey, S. J. & Scott, D. Eothyris and Oedaleops: do these early Permian synapsids from Texas and New Mexico form a clade? J. Vertebr. Paleontol. 29, 39–47 (2009).

    Google Scholar 

  93. 93.

    Maddin, H. C., Sidor, C. A. & Reisz, R. R. Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae. J. Vertebr. Paleontol. 28, 160–180 (2008).

    Google Scholar 

  94. 94.

    Heaton, M. J. Cranial anatomy of primitive captorhinid reptiles from the Late Pennsylvanian and Early Permian, Oklahoma and Texas. Oklah. Geol. Surv. 127, 1–84 (1979).

    Google Scholar 

  95. 95.

    Clark, J. & Carroll, R. L. Romeriid reptiles from the Lower Permian. Bull. Mus. Comp. Zool. 144, 353–407 (1973).

    Google Scholar 

  96. 96.

    Langston, W. Jr & Reisz, R. R. Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. J. Vertebr. Paleontol. 1, 73–96 (1981).

    Google Scholar 

  97. 97.

    Gow, C. E. The osteology and relationships of the Millerettidae (Reptilia: Cotylosauria). J. Zool. 167, 219–264 (1972).

    Google Scholar 

  98. 98.

    Carroll, R. L. Plesiosaur ancestors from the Upper Permian of Madagascar. Phil. Trans. R. Soc. Lond. B 293, 315–383 (1981).

    Google Scholar 

  99. 99.

    Ford, D. P. & Benson, R. B. J. A redescription of Orovenator mayorum (Sauropsida, Diapsida) using high‐resolution μ CT, and the consequences for early amniote phylogeny. Pap. Palaeontol. 5, 197–239 (2019).

    Google Scholar 

  100. 100.

    Berman, D. S. & Reisz, R. R. Restudy of Mycterosaurus longiceps (Reptilia, Pelycosauria) from the Lower Permian of Texas. Ann. Carnegie Mus. 51, 423–453 (1982).

    Google Scholar 

  101. 101.

    Tsuji, L. A. Cranial anatomy and phylogenetic affinities of the Permian parareptile Macroleter poezicus. J. Vertebr. Paleontol. 26, 849–865 (2006).

    Google Scholar 

  102. 102.

    Tsuji, L. A., Müller, J. & Reisz, R. R. Anatomy of Emeroleter levis and the phylogeny of the nycteroleter parareptiles. J. Vertebr. Paleontol. 32, 45–67 (2012).

    Google Scholar 

  103. 103.

    Cisneros, J. C. et al. A procolophonoid reptile with temporal fenestration from the Middle Triassic of Brazil. Proc. R. Soc. B 271, 1541–1546 (2004).

    PubMed  Google Scholar 

  104. 104.

    Säilä, L. K. The phylogenetic position of Nyctiphruretus acudens, a parareptile from the Permian of Russia. J. Iber. Geol. 36, 123–143 (2010).

    Google Scholar 

Download references

Acknowledgements

We are grateful to R. Cifelli and J. Larson (Sam Noble Oklahoma Museum of Natural History, Norman), S. Pierce and J. Cundiff (Museum of Comparative Zoology, Harvard), B. Simpson and K. Angielczyk (Field Museum of Natural History, Chicago), J. Choiniere and S. Jirah (Evolutionary Studies Institute, Johannesburg), C. Beard and D. Miao (Kansas University Natural History Museum, Lawrence) and D. Evans and K. Seymour (Royal Ontario Museum, Toronto) for access to curated museum specimens. We also thank R. Warnock (ETH Zurich) for advice on Bayesian analysis. This research was supported by a NERC studentship for D.P.F. from the DTP Environmental Research Council, UK (no. NE/L0021612/1).

Author information

Affiliations

Authors

Contributions

D.P.F. and R.B.J.B. conceived the project. D.P.F. collected the data and conducted the phylogenetic analysis and hypothesis testing. Both authors designed and produced the figures and wrote the manuscript.

Corresponding author

Correspondence to David P. Ford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Maximum parsimony strict consensus tree.

Strict consensus of 16 MPT’s recovered from maximum parsimony analysis, each with 1558 steps (consistency index 0.2356, retention index 0.5934, rescaled consistency index 0.1398). Figures above the nodes are Bremer support indices; figures below the nodes are bootstrap support indices. Bremer support below 2 or bootstrap support below 50 is omitted.

Extended Data Fig. 2 Bayesian maximum clade credibility tree (Mkv).

Maximum clade credibility tree recovered from Bayesian analysis using the non-time calibrated Mkv model. Figures adjacent to the nodes are the posterior probability value of the node.

Extended Data Fig. 3 Bayesian MCC tree (FDB) with node ages (median and 95% HPD).

Maximum clade credibility tree recovered from Bayesian analysis using the time calibrated fossilized-birth-death model with median node ages. Yellow horizontal bars represent 95% highest posterior density (HPD) interval at node age. Red figures adjacent to nodes are the median node ages. Abbreviations: Lopin. = Lopingian, Mid. = Middle, Miss. = Mississippian.

Supplementary information

Supplementary Information

Supplementary Discussions 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ford, D.P., Benson, R.B.J. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat Ecol Evol 4, 57–65 (2020). https://doi.org/10.1038/s41559-019-1047-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing