Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The social coevolution hypothesis for the origin of enzymatic cooperation


At the start of life, the origin of a primitive genome required individual replicators, or genes, to act like enzymes and cooperatively copy each other. The evolutionary stability of such enzymatic cooperation poses a problem, because it would have been susceptible to parasitic replicators that did not act like enzymes but could still benefit from the enzymatic behaviour of other replicators. Existing hypotheses to solve this problem require restrictive assumptions that may not be justified, such as the evolution of a cell membrane before the evolution of enzymatic cooperation. We show theoretically that, instead, selection itself can lead to replicators grouping themselves together in a way that favours cooperation. We show that the tendency to physically associate with others and cooperative enzymatic activity can coevolve, leading to the evolution of physically linked cooperative replicators. Our results shift the empirical problem from a search for special environmental conditions to questions about what types of phenotypes can be produced by simple replicators.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interactions and fitness effects.
Fig. 2: Coevolution of enzymatic activity and association.

Data availability

There are no data to report.

Code availability

All code has been made available, along with an implementation of the calculations, in Supplementary Software 1, and is available on GitHub at


  1. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  Google Scholar 

  2. Eigen, M. & Schuster, P. A principle of natural self-organization. Naturwissenschaften 64, 541–565 (1977).

    Article  CAS  Google Scholar 

  3. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1995).

  4. Bourke, A. F. Principles of Social Evolution (Oxford Univ. Press, 2011).

  5. Maynard Smith, J. Hypercycles and the origin of life. Nature 280, 445–446 (1979).

    Article  Google Scholar 

  6. Szathmáry, E. & Demeter, L. Group selection of early replicators and the origin of life. J. Theor. Biol. 128, 463–486 (1987).

    Article  Google Scholar 

  7. Frank, S. A. Kin selection and virulence in the evolution of protocells and parasites. Proc. R. Soc. Lond. B Biol. Sci. 258, 153–161 (1994).

    Article  CAS  Google Scholar 

  8. Zintzaras, E., Santos, M. & Szathmáry, E. ‘Living’ under the challenge of information decay: the stochastic corrector model vs. hypercycles. J. Theor. Biol. 217, 167–181 (2002).

    Article  CAS  Google Scholar 

  9. Bianconi, G., Zhao, K., Chen, I. A. & Nowak, M. A. Selection for replicases in protocells. PLoS Comput. Biol. 9, e1003051 (2013).

    Article  CAS  Google Scholar 

  10. Zintzaras, E., Santos, M. & Szathmáry, E. Selfishness versus functional cooperation in a stochastic protocell model. J. Theor. Biol. 267, 605–613 (2010).

    Article  Google Scholar 

  11. Boerlijst, M. C. & Hogeweg, P. Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D Nonlinear Phenomena 48, 17–28 (1991).

    Article  Google Scholar 

  12. Boerlijst, M. C. & Hogeweg, P. Spatial gradients enhance persistence of hypercycles. Physica D Nonlinear Phenomena 88, 29–39 (1995).

    Article  CAS  Google Scholar 

  13. Cronhjort, M. B. & Blomberg, C. Cluster compartmentalization may provide resistance to parasites for catalytic networks. Physica D Nonlinear Phenomena 101, 289–298 (1997).

    Article  CAS  Google Scholar 

  14. McCaskill, J. S., Füchslin, R. M. & Altmeyer, S. The stochastic evolution of catalysts in spatially resolved molecular systems. Biol. Chem. 382, 1343–1363 (2001).

    Article  CAS  Google Scholar 

  15. Szabó, P., Scheuring, I., Czárán, T. & Szathmáry, E. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420, 340–343 (2002).

    Article  Google Scholar 

  16. Sardanyés, J. & Solé, R. V. Spatio-temporal dynamics in simple asymmetric hypercycles under weak parasitic coupling. Physica D Nonlinear Phenomena 231, 116–129 (2007).

    Article  Google Scholar 

  17. Shay, J. A., Huynh, C. & Higgs, P. G. The origin and spread of a cooperative replicase in a prebiotic chemical system. J. Theor. Biol. 364, 249–259 (2015).

    Article  CAS  Google Scholar 

  18. Higgs, P. G. & Lehman, N. The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genetics 16, 7–17 (2015).

    Article  CAS  Google Scholar 

  19. Levin, S. R. & West, S. A. The evolution of cooperation in simple molecular replicators. Proc. R. Soc. Lond. B Biol. Sci. 284, 20171967 (2017).

    Article  Google Scholar 

  20. Metz, J. A., Nisbet, R. M. & Geritz, S. A. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992).

    Article  CAS  Google Scholar 

  21. Rand, D. A., Wilson, H. & McGlade, J. M. Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Phil. Trans. R. Soc. Lond. B Biol. Sci. 343, 261–283 (1994).

    Article  CAS  Google Scholar 

  22. Geritz, S. A., Metz, J. A., Kisdi, É. & Meszéna, G. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024 (1997).

    Article  CAS  Google Scholar 

  23. Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).

    Article  CAS  Google Scholar 

  24. Van Baalen, M. & Jansen, V. A. Dangerous liaisons: the ecology of private interest and common good. Oikos 95, 211–224 (2001).

    Article  Google Scholar 

  25. Hurford, A., Cownden, D. & Day, T. Next-generation tools for evolutionary invasion analyses. J. R. Soc. Interface 7, 561–571 (2009).

    Article  Google Scholar 

  26. MaynardSmith, J. & Price, G. The logic of animal conflict. Nature 246, 15–18 (1973).

    Article  Google Scholar 

  27. Hamilton, W. D. The genetical evolution of social behavior. I. J . Theor. Biol. 7, 1–16 (1964).

    Article  CAS  Google Scholar 

  28. Hamilton, W. D, The genetical evolution of social behavior. II. J. Theor. Biol. 7, 17–52 (1964).

    Article  CAS  Google Scholar 

  29. Frank, S. A. The origin of synergistic symbiosis. J. Theor. Biol. 176, 403–410 (1995).

    Article  CAS  Google Scholar 

  30. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, 1998).

  31. Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).

    Article  CAS  Google Scholar 

  32. Gardner, A., West, S. A. & Barton, N. H. The relation between multilocus population genetics and social evolution theory. Am. Nat. 169, 207–226 (2006).

    Article  Google Scholar 

  33. Wyatt, G., West, S. & Gardner, A. Can natural selection favour altruism between species? J. Evol. Biol. 26, 1854–1865 (2013).

    Article  CAS  Google Scholar 

  34. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    Article  Google Scholar 

  35. Law, R. & Dieckmann, U. Symbiosis through exploitation and the merger of lineages in evolution. Proc. R. Soc. Lond. B Biol. Sci. 265, 1245–1253 (1998).

    Article  Google Scholar 

  36. Queller, D. C. Expanded social fitness and Hamilton’s rule for kin, kith, and kind. Proc. Natl Acad. Sci. USA 108, 10792–10799 (2011).

    Article  CAS  Google Scholar 

  37. Cooper, G. A. & West, S. A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2, 1161–1167 (2018).

    Article  Google Scholar 

  38. Takeuchi, N., Hogeweg, P. & Kaneko, K. The origin of a primordial genome through spontaneous symmetry breaking. Nat. Commun. 8, 250 (2017).

    Article  Google Scholar 

Download references


We thank G. Cooper and S. Frank for helpful comments on the manuscript. S.R.L. is supported by The Clarendon Fund, Hertford College and NERC. S.G. is supported by the Leverhulme Trust (visiting professorship grant).

Author information

Authors and Affiliations



S.R.L. and S.A.W. conceived of the manuscript. The modelling was carried out by S.R.L. and S.G. All authors contributed equally to the final presentation of the manuscript.

Corresponding author

Correspondence to Samuel R. Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Table 1, discussion, models and references.

Reporting Summary

Supplementary Software 1

Mathematica notebook containing all of the numerical calculations and code for generating the figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, S.R., Gandon, S. & West, S.A. The social coevolution hypothesis for the origin of enzymatic cooperation. Nat Ecol Evol 4, 132–137 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing