Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity

Abstract

The unprecedented diversifications in the fossil record of the early Palaeozoic (541–419 million years ago) increased both within-sample (α) and global (γ) diversity, generating considerable ecological complexity. Faunal difference (β diversity), including spatial heterogeneity, is thought to have played a major role in early Palaeozoic marine diversification, although α diversity is the major determinant of γ diversity through the Phanerozoic. Drivers for this Phanerozoic shift from β to α diversity are not yet resolved. Here, we evaluate the impacts of environmental and faunal heterogeneity on diversity patterns using a global spatial grid. We present early Palaeozoic genus-level α, β and γ diversity curves for molluscs, brachiopods, trilobites and echinoderms and compare them with measures of spatial lithological heterogeneity, which is our proxy for environmental heterogeneity. We find that α and β diversity are associated with increased lithological heterogeneity, and that β diversity declines over time while α increases. We suggest that the enhanced dispersal of marine taxa from the Middle Ordovician onwards facilitated increases in α diversity by encouraging the occupation of narrow niches and increasing the prevalence of transient species, simultaneously reducing spatial β diversity. This may have contributed to a shift from β to α diversity as the major determinant of γ diversity increase over this critical evolutionary interval.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diversity curves from 540–419 million years ago.
Fig. 2: Heterogeneity of lithological units within grids, and nestedness from 540-419 Ma.
Fig. 3: Relationship between within-grid α diversity and within-grid number of formations.

Data availability

All data used in this work can be downloaded from the PBDB (https://paleobiodb.org/#/). The direct links for retrieving the data used to generate these results are available in the accompanying code (see the code availability).

Code availability

The complete code and relevant results are recorded in R code and can be downloaded via Zeonodo (https://doi.org/10.5281/zenodo.3463219).

References

  1. 1.

    Sepkoski, J. J. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14, 221–234 (1988).

    PubMed  Google Scholar 

  2. 2.

    Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B. & Munnecke, A. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 99–119 (2010).

    Google Scholar 

  3. 3.

    Servais, T. et al. The onset of the ‘Ordovician Plankton Revolution’ in the Late Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 12–28 (2016).

    Google Scholar 

  4. 4.

    Smith, M. P. & Harper, D. A. T. Causes of the Cambrian explosion. Science 341, 1355–1356 (2013).

    PubMed  Google Scholar 

  5. 5.

    Harper, D. A. T. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 148–166 (2006).

    Google Scholar 

  6. 6.

    Droser, M. L. & Finnegan, S. The Ordovician Radiation: a follow-up to the Cambrian Explosion? Integr. Comp. Biol. 43, 178–184 (2003).

    PubMed  Google Scholar 

  7. 7.

    Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).

    PubMed  Google Scholar 

  8. 8.

    Servais, T. & Harper, D. A. T. The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration. Lethaia 51, 151–164 (2018).

    Google Scholar 

  9. 9.

    Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. The Great Ordovician Biodiversification Event (Columbia Univ. Press, 2004).

  10. 10.

    Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Ø. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: darriwilian assembly of early paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 249–270 (2019).

    Google Scholar 

  11. 11.

    Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts and Company Publishers, 2013).

  12. 12.

    Stigall, A. L. Ordovician oxygen and biodiversity. Nat. Geosci. 10, 883–888 (2017).

    Google Scholar 

  13. 13.

    Na, L. & Kiessling, W. Diversity partitioning during the Cambrian radiation. Proc. Natl Acad. Sci. USA 112, 4702–4706 (2015).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hofmann, R., Tietje, M. & Aberhan, M. Diversity partitioning in Phanerozoic benthic marine communities. Proc. Natl Acad. Sci. USA 116, 79–83 (2019).

    PubMed  Google Scholar 

  15. 15.

    Miller, A. I. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annu. Rev. Ecol. Syst. 28, 85–104 (1997).

    CAS  PubMed  Google Scholar 

  16. 16.

    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    PubMed  Google Scholar 

  17. 17.

    Harper, D. A. T. The Ordovician brachiopod radiation: roles of alpha, beta, and gamma diversity. Geol. Soc. Am. Spec. Pap. 466, 69–83 (2010).

    Google Scholar 

  18. 18.

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    CAS  PubMed  Google Scholar 

  19. 19.

    Hautmann, M. Diversification and diversity partitioning. Paleobiology 40, 162–176 (2014).

    Google Scholar 

  20. 20.

    Miller, A. I. et al. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35, 612–630 (2009).

    Google Scholar 

  21. 21.

    Stigall, A. L. How is biodiversity produced? Examining speciation processes during the GOBE. Lethaia 51, 165–172 (2018).

    Google Scholar 

  22. 22.

    Stigall, A. L., Bauer, J. E., Lam, A. R. & Wright, D. F. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Glob. Planet. Change 148, 242–257 (2017).

    Google Scholar 

  23. 23.

    Miller, A. I. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician radiation. Paleobiology 23, 410–419 (1997).

    CAS  PubMed  Google Scholar 

  24. 24.

    Miller, A. I. & Mao, S. in Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities (eds McKinney, M. L. & Drake, J. A.) Ch. 13 (Columbia Univ. Press, 2001).

  25. 25.

    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. USA 114, 5653–5658 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kröger, B. Changes in the latitudinal diversity gradient during the Great Ordovician Biodiversification Event. Geology 46, 44–47 (2017).

    Google Scholar 

  27. 27.

    Darroch, S. A. F. & Wagner, P. J. Response of beta diversity to pulses of Ordovician-Silurian mass extinction. Ecology 96, 532–549 (2015).

    PubMed  Google Scholar 

  28. 28.

    Kröger, B. & Lintulaakso, K. RNames, a stratigraphical database designed for the statistical analysis of fossil occurrences–the Ordovician diversification as a case study. Palaeontol. Electron. 20, 20.1.1T (2017).

    Google Scholar 

  29. 29.

    Jaanusson, V. & Bergström, S. M. Middle Ordovician faunal spatial differentiation in Baltoscandia and the Appalachians. Alcheringa 4, 89–110 (1980).

    Google Scholar 

  30. 30.

    Kröger, B. in Early Palaeozoic Biogeography and Palaeogeography Geological Society Memoir No. 38 (eds Harper, D. A. T. & Servais, T.) 429–448 (Geological Society of London, 2013).

  31. 31.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Google Scholar 

  32. 32.

    Harper, D. A. T. & Servais, T. in Early Palaeozoic Biogeography and Palaeogeography Geological Society Memoir No. 38 (eds Harper, D. A. T. & Servais, T.) 1–4 (Geological Society of London, 2013).

  33. 33.

    Harper, D. A. T. et al. in Early Palaeozoic Biogeography and Palaeogeography Geological Society Memoir No. 38 (eds Harper, D. A. T. & Servais, T.) 127–144 (Geological Society of London, 2013).

  34. 34.

    Cocks, L. R. M. & Fortey, R. A. in Palaeozoic Palaeogeography and Biogeography Geological Society Memoir No. 12 (eds McKerrow, W. S. & Scotese, C. R.) 97–104 (Geological Society of London, 1990).

  35. 35.

    Nützel, A., Lehnert, O. & Frýda, J. Origin of planktotrophy- evidence from early molluscs. Evol. Dev. 8, 325–330 (2006).

    PubMed  Google Scholar 

  36. 36.

    Peterson, K. J. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33, 929–932 (2005).

    Google Scholar 

  37. 37.

    Jablonski, D. & Lutz, R. A. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58, 21–89 (1983).

    Google Scholar 

  38. 38.

    Lam, A. R., Stigall, A. L. & Matzke, N. J. Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 489, 147–165 (2017).

    Google Scholar 

  39. 39.

    Kröger, B. & Aubrechtová, M. The cephalopods of the Kullsberg Limestone Formation, Upper Ordovician, central Sweden and the effects of reef diversification on cephalopod diversity. J. Syst. Palaeontol. 17, 961–995 (2019).

    Google Scholar 

  40. 40.

    McPeek, M. A. The macroevolutionary consequences of ecological differences among species. Palaeontology 50, 111–129 (2007).

    Google Scholar 

  41. 41.

    McPeek, M. A. The ecological dynamics of clade diversification and community assembly. Am. Nat. 172, E270–E284 (2008).

    PubMed  Google Scholar 

  42. 42.

    Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).

    PubMed  Google Scholar 

  43. 43.

    Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proc. R. Soc. B 286, 20191634 (2019).

    PubMed  Google Scholar 

  44. 44.

    Kocsis, Á. T. Icosa: Global triangular and penta-hexagonal grids based on tessellated icosahedra. R version 0.9.81 https://cran.r-project.org/web/packages/icosa/index.html (2017).

  45. 45.

    Wright, N. M., Zahirovic, S. & Seton, M. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences 10, 1529–1541 (2013).

    Google Scholar 

  46. 46.

    Cohen, K. M., Harper, D. A. T. & Gibbard, P. L. ICS International Chronostratigraphic Chart v2018/08 (International Commission on Stratigraphy, IUGS, 2018); http://www.stratigraphy.org

  47. 47.

    Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G. The Geologic Timescale (Elsevier, 2012).

  48. 48.

    Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80 (2010).

    Google Scholar 

  49. 49.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33, 23–45 (2010).

    Google Scholar 

  50. 50.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

    Google Scholar 

  51. 51.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Google Scholar 

  52. 52.

    Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    PubMed  Google Scholar 

  54. 54.

    Patzkowsky, M. E. & Holland, S. M. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33, 295–309 (2007).

    Google Scholar 

  55. 55.

    Oksanen, A. J. et al. Vegan: Community ecology package. R version 2.5.2 https://CRAN.R-project.org/package=vegan (2018).

  56. 56.

    Wright, D. H. A comparative analysis of nested subset patterns of species composition. Oecologia 113, 1–20 (1998).

    Google Scholar 

  57. 57.

    Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).

    Google Scholar 

  58. 58.

    Simpson, G. G. Mammals and the nature of continents. Am. J. Sci. 241, 1–31 (1943).

    Google Scholar 

  59. 59.

    Sørensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. K. Danske Vidensk. Selsk. Biol. Skr. 5, 1–34 (1948).

    Google Scholar 

  60. 60.

    Brocklehurst, N., Day, M. O. & Fröbisch, J. Accounting for differences in species frequency distributions when calculating beta diversity in the fossil record. Methods Ecol. Evol. 9, 1409–1420 (2018).

    Google Scholar 

  61. 61.

    Bray, J. R. & Curtis, J. T. An Ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Google Scholar 

  62. 62.

    Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat. Geosci. 10, 925–929 (2017).

    CAS  Google Scholar 

  63. 63.

    Clarke, A. & Gaston, K. J. Climate, energy and diversity. Proc. R. Soc. B 273, 2257–2266 (2006).

    PubMed  Google Scholar 

  64. 64.

    Hull, P. M., Darroch, S. A. F. & Erwin, D. H. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015).

    CAS  PubMed  Google Scholar 

  65. 65.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  66. 66.

    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    CAS  PubMed  Google Scholar 

  67. 67.

    Peters, S. E. & Foote, M. Determinants of extinction in the fossil record. Nature 416, 420–424 (2002).

    CAS  PubMed  Google Scholar 

  68. 68.

    Peters, S. E. Geologic constraints on the macroevolutionary history of marine animals. Proc. Natl Acad. Sci. USA 102, 12326–12331 (2005).

    CAS  PubMed  Google Scholar 

  69. 69.

    Smith, A. B. & McGowan, A. J. How much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50, 765–774 (2007).

    Google Scholar 

  70. 70.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/.

Download references

Acknowledgements

This study was part of the Academy of Finland-funded project ‘Ecological engineering as a biodiversity driver in deep time’. We thank S. Scholze for data entry into the PBDB over the course of this study, M. Wale for help with running sensitivity analyses and R. Hofmann for helpful discussions on β diversity in the Palaeozoic. This is a contribution to IGCP 653 (The onset of the Great Ordovician Biodiversification Event).

Author information

Affiliations

Authors

Contributions

A.P. and B.K. devised the research, agreed on analytical techniques and wrote the paper. A.P. calculated β diversity and checked correlations. B.K. downloaded and formatted data from the PBDB, calculated α and γ diversity, and drew the figures.

Corresponding author

Correspondence to Amelia Penny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Raw beta diversity through time.

Raw (non RAC) beta diversity through time, showing high values interpreted to be caused by incomplete sampling.

Extended Data Fig. 2 Sensitivity analysis of the effect of grid size on beta diversity.

RAC beta diversity curves made using a global grid of hexagons with side (a) 55 km and (b) 222 km. Kolmogorov-Smirnov tests show no significant difference between these curves and the curve made with a 111 km grid. (a) D = 0.15, p = 0.99 for grids of side 55km; (b) D = 0.08, p = 1 for grids of side 222 km.

Extended Data Fig. 3 Sensitivity analysis of the effect of standardization coverage on beta diversity.

RAC beta diversity curves made using a standardization coverage of (a) 0.2 and (b) 0.5. Kolmogorov-Smirnov tests show no significant difference between these curves and the curve with a standardization coverage of 0.4 (a) D = 0.23, p = 0.90 for a standardization coverage of 0.2; (b) D = 0.19, p = 0.94 for a standardization coverage of 0.5.

Extended Data Fig. 4 Beta diversity curves made using the Simpson and Bray-Curtis dissimilarities.

RAC beta diversity curves showing (a) the Bray-Curtis and (b) the Simpson dissimilarity through time. Kolmogorov-Smirnov tests show no significant difference between these curves and the RAC Sørensen dissimilarity curve. (a) D = 0.23, p = 0.90 for the Bray-Curtis curve; (b) D = 0.38, p = 0.30 for the Simpson dissimilarity curve.

Extended Data Fig. 5 Autocorrelation function plots for all variables for which correlations were tested.

Autocorrelation function plots for variables tested for correlation in this study. No variable shows significant autocorrelation, which would be indicated by columns passing the dashed blue horizontal lines at lags greater than 0.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penny, A., Kröger, B. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity. Nat Ecol Evol 3, 1655–1660 (2019). https://doi.org/10.1038/s41559-019-1035-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing