Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fermentation innovation through complex hybridization of wild and domesticated yeasts

Abstract

The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of genomic contributions and isolation environments for interspecies hybrids.
Fig. 2: Population and phylogenomic analyses of S. cerevisiae, S. kudriavzevii, S. uvarum, S. eubayanus and their hybrid subgenomes.
Fig. 3: Mitochondrial genome inheritance in interspecies hybrids.
Fig. 4: Hybrid inheritance and functionality of genes responsible for 4VG production.
Fig. 5: Summary of hybrids and origin of lager traits.

Data availability

References and accession numbers for the published data used can be found in Supplementary Dataset 16. Short-read data (newly published here) are available through the NCBI SRA database under the BioProject accession number PRJNA522928. Assembled genomes published here are available under GenBank BioProject PRJNA522928.

Code availability

Custom R and Python scripts used for this publication can be found on GitHub (https://github.com/qlangdon/hybrid-ferment-invent).

References

  1. Hornsey, I. S. Alcohol and Its Role in the Evolution of Human Society (RSC Publishing, 2012).

  2. Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, e5 (2005).

    PubMed Central  Article  CAS  Google Scholar 

  3. Liti, G., Peruffo, A., James, S. A., Roberts, I. N. & Louis, E. J. Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22, 177–192 (2005).

    CAS  PubMed  Article  Google Scholar 

  4. Gallone, B. et al. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr. Opin. Biotechnol. 49, 148–155 (2018).

    CAS  PubMed  Article  Google Scholar 

  5. Legras, J. L. et al. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol. Biol. Evol. 35, 1712–1727 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Rodríguez, M. E. et al. Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia. FEMS Yeast Res. 17, fow109 (2017).

    Google Scholar 

  7. Barbosa, R. et al. Multiple rounds of artificial selection promote microbe secondary domestication—the case of cachaça yeasts. Genome Biol. Evol. 10, 1939–1955 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Gallone, B. et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166, 1397–1410 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Gonçalves, M. et al. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr. Biol. 26, 1–12 (2016).

    Article  CAS  Google Scholar 

  10. Duan, S. F. et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat. Commun. 9, 2690 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Marsit, S. & Dequin, S. Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res. 15, 1–12 (2015).

    Article  CAS  Google Scholar 

  13. Almeida, P., Barbosa, R., Bensasson, D., Gonçalves, P. & Sampaio, J. P. Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at noncoding sites. Mol. Ecol. 26, 2167–2182 (2017).

    CAS  PubMed  Article  Google Scholar 

  14. Hittinger, C. T., Steele, J. L. & Ryder, D. S. Diverse yeasts for diverse fermented beverages and foods. Curr. Opin. Biotechnol. 49, 199–206 (2018).

    CAS  PubMed  Article  Google Scholar 

  15. Gibson, B. & Liti, G. Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 32, 17–27 (2015).

    CAS  PubMed  Google Scholar 

  16. Libkind, D. et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl Acad. Sci. USA 108, 14539–14544 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Baker, E. P. et al. Mitochondrial DNA and temperature tolerance in lager yeasts. Sci. Adv. 5, eaav1869 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Baker, E. P. & Hittinger, C. T. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet. 15, e1007786 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Hebly, M. et al. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res. 15, 1–14 (2015).

    Article  CAS  Google Scholar 

  20. Gibson, B. R., Storgårds, E., Krogerus, K. & Vidgren, V. Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. Yeast 30, 255–266 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. Gorter de Vries, A. R. et al. Laboratory evolution of a Saccharomyces cerevisiae x S. eubayanus hybrid under simulated lager-brewing conditions. Front. Genet. 10, 242 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Monerawela, C. & Bond, U. Brewing up a storm: the genomes of lager yeasts and how they evolved. Biotechnol. Adv. 35, 512–519 (2017).

    CAS  PubMed  Article  Google Scholar 

  23. Peris, D., Pérez-Torrado, R., Hittinger, C. T., Barrio, E. & Querol, A. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. Yeast 35, 51–69 (2018).

    CAS  PubMed  Article  Google Scholar 

  24. Nguyen, H. V. & Boekhout, T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res. 17, 1–19 (2017).

    Article  CAS  Google Scholar 

  25. Nguyen, H. V., Legras, J. L., Neuvéglise, C. & Gaillardin, C. Deciphering the hybridisation history leading to the lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380 T. PLoS ONE 6, e25821 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Almeida, P. et al. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat. Commun. 5, 4044 (2014).

    CAS  PubMed  Article  Google Scholar 

  27. Dunn, B. & Sherlock, G. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res. 18, 1610–1623 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Hittinger, C. T. Saccharomyces diversity and evolution: a budding model genus. Trends Genet. 29, 309–317 (2013).

    CAS  PubMed  Article  Google Scholar 

  29. Boynton, P. J. & Greig, D. The ecology and evolution of non-domesticated Saccharomyces species. Yeast 31, 449–462 (2014).

    CAS  PubMed  Google Scholar 

  30. Hittinger, C. T. et al. Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464, 54–58 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Sampaio, J. P. & Gonçalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 74, 2144–2152 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Peris, D. et al. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus. PLoS Genet. 12, e1006155 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Salvadó, Z., Arroyo-López, F. N., Barrio, E., Querol, A. & Guillamón, J. M. Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol. 28, 1155–1161 (2011).

    PubMed  Article  CAS  Google Scholar 

  34. Gonçalves, P., Valério, E., Correia, C., de Almeida, J. M. G. C. F. & Sampaio, J. P. Evidence for divergent evolution of growth temperature preference in sympatric Saccharomyces species. PLoS ONE 6, e20739 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Li, X. C., Peris, D., Hittinger, C. T., Sia, E. A. & Fay, J. C. Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast. Sci. Adv. 5, eaav1848 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Ortiz-Tovar, G., Pérez-Torrado, R., Adam, A. C., Barrio, E. & Querol, A. A comparison of the performance of natural hybrids Saccharomyces cerevisiae × Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution. Int. J. Food Microbiol. 274, 12–19 (2018).

    CAS  PubMed  Article  Google Scholar 

  37. Tronchoni, J., Medina, V., Guillamón, J. M., Querol, A. & Pérez-Torrado, R. Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 15, 1–10 (2014).

    Article  CAS  Google Scholar 

  38. Huh, K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    CAS  Article  PubMed  Google Scholar 

  39. Chou, J. Y., Hung, Y. S., Lin, K. H., Lee, H. Y. & Leu, J. Y. Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol. 8, e1000432 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Lee, H. Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135, 1065–1073 (2008).

    CAS  PubMed  Article  Google Scholar 

  41. Hou, J. & Schacherer, J. Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr. Genet. 62, 25–29 (2016).

    CAS  PubMed  Article  Google Scholar 

  42. Novo, M. et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl Acad. Sci. USA 106, 16333–16338 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Consortium, T. G. O. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  CAS  Google Scholar 

  45. Han, E.-K., Cotty, F., Sottas, C., Jiang, H. & Michels, C. A. Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol. Microbiol. 17, 1093–1107 (1995).

    CAS  PubMed  Article  Google Scholar 

  46. Salema-Oom, M., Pinto, V. V., Gonçalves, P. & Spencer-Martins, I. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family. Appl. Environ, Microbiol. 71, 5044–5049 (2005).

    CAS  Article  Google Scholar 

  47. Horák, J. Regulations of sugar transporters: insights from yeast. Curr. Genet. 59, 1–31 (2013).

    PubMed  Article  CAS  Google Scholar 

  48. Dietvorst, J., Londesborough, J. & Steensma, H. Y. Maltotriose utilization in lager yeast strains: MTTI encodes a maltotriose transporter. Yeast 22, 775–788 (2005).

    CAS  Article  PubMed  Google Scholar 

  49. Diderich, J. A., Weening, S. M., van den Broek, M., Pronk, J. T. & Daran, J.-M. G. Selection of Pof-Saccharomyces eubayanus variants for the construction of S. cerevisiae × S. eubayanus hybrids with reduced 4-vinyl guaiacol formation. Front. Microbiol. 9, 1640 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. & Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109, 564–569 (2010).

    CAS  PubMed  Article  Google Scholar 

  51. Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Bing, J., Han, P.-J., Liu, W.-Q., Wang, Q.-M. & Bai, F.-Y. Evidence for a Far East Asian origin of lager beer yeast. Curr. Biol. 24, R380–R381 (2014).

    CAS  PubMed  Article  Google Scholar 

  53. Borneman, A. R., Forgan, A. H., Pretorius, I. S. & Chambers, P. J. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 8, 1185–1195 (2008).

    CAS  PubMed  Article  Google Scholar 

  54. Borneman, A. R. et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 7, e1001287 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Borneman, A. R., Forgan, A. H., Kolouchova, R., Fraser, J. A. & Schmidt, S. A. Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3 6, 957–971 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Dunn, B., Richter, C., Kvitek, D. J., Pugh, T. & Sherlock, G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 22, 908–924 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Gayevskiy, V. & Goddard, M. R. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests. Environ. Microbiol. 18, 1137–1147 (2016).

    CAS  PubMed  Article  Google Scholar 

  58. Gayevskiy, V., Lee, S. & Goddard, M. R. European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans. FEMS Yeast Res. 16, 1–12 (2016).

    Article  CAS  Google Scholar 

  59. Hewitt, S. K., Donaldson, I. J., Lovell, S. C. & Delneri, D. Sequencing and characterisation of rearrangements in three S. pastorianus strains reveals the presence of chimeric genes and gives evidence of breakpoint reuse. PLoS ONE 9, e92203 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Hose, J. et al. Dosage compensation can buffer copynumber variation in wild yeast. eLife 4, 1–28 (2015).

    Article  Google Scholar 

  61. Krogerus, K., Preiss, R. & Gibson, B. A unique Saccharomyces cerevisiae × Saccharomyces uvarum hybrid isolated from Norwegian farmhouse beer: characterization and reconstruction. Front. Microbiol. 9, 1–15 (2018).

    Article  Google Scholar 

  62. Okuno, M. et al. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization. DNA Res. 1, 1–14 (2016).

    Article  Google Scholar 

  63. Scannell, D. R. et al. The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto genus. G3 1, 11–25 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Skelly, D. A. et al. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res. 23, 1496–1504 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Strope, P. K. et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 125, 762–774 (2015).

    Article  CAS  Google Scholar 

  66. van den Broek, M. et al. Chromosomal copy number variation in Saccharomyces pastorianus is evidence for extensive genome dynamics in industrial lager brewing strains. Appl. Environ. Microbiol. 81, 6253–6267 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Yue, J. X. et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 49, 913–924 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Zheng, D. Q. et al. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 13, 479 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Bergström, A. et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol. Biol. Evol. 31, 872–888 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Akao, T. et al. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res. 18, 423–434 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Almeida, P. et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol. Ecol. 24, 5412–5427 (2015).

    PubMed  Article  Google Scholar 

  72. Baker, E. et al. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol. Biol. Evol. 32, 2818–2831 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Langdon, Q. K., Peris, D., Kyle, B. & Hittinger, C. T. sppIDer: a species identification tool to investigate hybrid genomes with high-throughput sequencing. Mol. Biol. Evol. 35, 2835–2849 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Liti, G. et al. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics 14, 69 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Peris, D. et al. Biotechnology for biofuels hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnol. Biofuels 10, 1–19 (2017).

    Article  CAS  Google Scholar 

  77. Teytelman, L. et al. Impact of chromatin tructures on DNA processing for genomic analyses. PLoS ONE 4, e6700 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    CAS  PubMed  Article  Google Scholar 

  79. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Zhou, X. et al. In silico whole genome sequencer and analyzer (iWGS): a computational pipeline to guide the design and analysis of de novo genome sequencing studies. G3 6, 3655–3662 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  82. Foury, F., Roganti, T., Lecrenier, N. & Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331 (1998).

    CAS  PubMed  Article  Google Scholar 

  83. Sulo, P. et al. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’. DNA Res. 24, 571–583 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Peris, D. et al. Molecular phylogenetics and evolution mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Mol. Phylogenet. Evol. 108, 49–60 (2017).

    CAS  PubMed  Article  Google Scholar 

  85. Johnson, M. G. et al. HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. https://doi.org/10.3732/apps.1600016 (2016).

  86. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  87. Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  88. Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS  PubMed  Article  Google Scholar 

  89. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  PubMed  Google Scholar 

  90. Walther, A., Hesselbart, A. & Wendland, J. Genome sequence of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. G3 4, 783–793 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  91. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    Google Scholar 

  93. Opulente, D. A. et al. Factors driving metabolic diversity in the budding yeast subphylum. BMC Biol. 16, 1–15 (2018).

    Article  CAS  Google Scholar 

  94. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  Article  Google Scholar 

  98. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).

  99. Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank K.J. Verstrepen for coordinating publication with their study; A.B. Hulfachor and M. Bontrager for preparing a subset of Illumina libraries; the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina sequencing facilities and services; M.-A. Lachance, A. Kinart, D.T. Doering, R. Thiel and D. Carey for strains; and M. Langdon, A.B. Hulfachor and K. Sylvester for collecting fermentation samples and/or isolating strains. This material is based upon work supported by the National Science Foundation (grant nos. DEB-1253634 to C.T.H. and DGE-1256259 (Graduate Research Fellowship to Q.K.L.), the USDA National Institute of Food and Agriculture Hatch Project (nos. 1003258 and 1020204 to C.T.H.) and in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science nos. DE-SC0018409 and DE-FC02-07ER64494). Q.K.L. was also supported by the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (grant no. 5T32GM007133). D.P. is a Marie Sklodowska-Curie fellow of the European Union’s Horizon 2020 research and innovation programme (grant no. 747775). E.P.B. was supported by a Louis and Elsa Thomsen Wisconsin Distinguished Graduate Fellowship. U.B. is funded by Horizon 2020 MSCA-ITN grant no. 764364. D.L. was supported by CONICET (grant no. PIP 392), FONCyT (grant no. PICT 3677) and Universidad Nacional del Comahue (grant no. B199). C.T.H. is a Pew Scholar in the Biomedical Sciences, Vilas Faculty Early Career Investigator and H.I. Romnes Faculty Fellow, supported by the Pew Charitable Trusts, Vilas Trust Estate and Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Q.K.L. performed most analyses with assistance from D.A.O. D.P. and Q.K.L. performed mitochondrial genome analyses and drafted text. E.P.B. and Q.K.L. analysed genes of functional interest and drafted text. Q.K.L., E.P.B. and D.A.O. sequenced genomes. H.-V.N., U.B., P.G. and J.P.S. contributed key strains to study design. Q.K.L., D.P., E.P.B., D.L. and C.T.H. designed the study. Q.K.L. and C.T.H. wrote the manuscript with editorial input from all coauthors.

Corresponding author

Correspondence to Chris Todd Hittinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Supplementary Figs. 1–15.

Reporting Summary

Supplementary Dataset 1

All hybrids and their parent contributions.

Supplementary Dataset 2

PCA analyses. Percent explained by each principal component included in column headers.

Supplementary Dataset 3

Newick formatted file of the S. kudriavzevii phylogeny with major hybrids.

Supplementary Dataset 4

Newick formatted file of the S. kudriavzevii phylogeny with minor hybrids.

Supplementary Dataset 5

Newick formatted file of the S. eubayanus phylogeny with major hybrids.

Supplementary Dataset 6

Newick formatted file of the S. eubayanus phylogeny with minor hybrids.

Supplementary Dataset 7

Newick formatted file of the S. uvarum phylogeny with major hybrids.

Supplementary Dataset 8

Newick formatted file of the S. uvarum phylogeny with minor hybrids.

Supplementary Dataset 9

Newick formatted file of the S. cerevisiae phylogeny with all strains analysed.

Supplementary Dataset 10

Newick formatted file of the S. cerevisiae phylogeny of just the Ale/Beer1 clade.

Supplementary Dataset 11

Results of Fisher’s exact test and Bonferroni correction of mitochondrially localized genes. mtInteracting = nuclear-encoded but mitochondrially localized gene.

Supplementary Dataset 12

Summary of number of 1:1:1:1 orthologues present in each subgenome.

Supplementary Dataset 13

GO term results of genes found in novel regions of the de novo assembled genomes.

Supplementary Dataset 14

Brewing relevant gene summaries. 30“-“ Indicates when HybPiper failed to recover and assemble genes for this group or that these assemblies failed our length and coverage cutoffs.

Supplementary Dataset 15

Metadata for all strains newly sequenced in this study. The “New hybrid” column denotes hybrid genome sequences that are newly published in this study.

Supplementary Dataset 16

Published data accession information.

Supplementary Dataset 17

Haplotype key for mitochondrial genomes, PAD1 and FDC1. Dataset A only includes strains where 15S rRNA could be assembled, while Dataset B has 15S rRNA removed.

Supplementary Dataset 18

Regions used for minor contribution analyses.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Langdon, Q.K., Peris, D., Baker, E.P. et al. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 3, 1576–1586 (2019). https://doi.org/10.1038/s41559-019-0998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0998-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing