Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams

Abstract

Climate change vulnerability depends on whether organisms can disperse rapidly enough to keep pace with shifting temperatures and find suitable habitat along the way. Here, we develop a method to examine where and for which species shifting isotherms will outpace species dispersal using stream networks of the southern Appalachian Mountains (United States) and their highly speciose and endemic fish fauna as a model system. By exploring alternative tributary and mainstem dispersal pathways, we identify tributaries as slow-climate-velocity pathways along which some fish can successfully disperse and thus keep pace with climate change. Despite accessibility and thermal suitability, non-temperature habitat conditions in tributaries are unsuitable for some dispersing species, thus probably precluding establishment of persistent populations. Our findings demonstrate a trade-off shaping the efficacy of thermal refugia that depends on species-specific habitat associations and reveal individual-level dispersal behaviour, body size and stream network geometry as general correlates of climate change vulnerability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Temperature and ISVs in southern Appalachia.
Fig. 2: Frequency of dispersal deficits among 233 fish species.
Fig. 3: Habitat suitability in upstream dispersal pathways.
Fig. 4: Species-level mismatch between net DV and upstream habitat suitability.

David Neely (eh)

Fig. 5: Community-level mismatch between net DV and upstream habitat suitability.

Data availability

Dispersal traits are provided in Supplementary Table 5.

Code availability

Original R scripts and GIS layers generated and/or analysed are available on Figshare at https://doi.org/10.6084/m9.figshare.8948546.

References

  1. 1.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  2. 2.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).

    Article  PubMed Central  Google Scholar 

  5. 5.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article  PubMed  Google Scholar 

  6. 6.

    Comte, L., Buisson, L., Daufresne, M. & Grenouillet, G. Climate‐induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw. Biol. 58, 625–639 (2013).

    Article  Google Scholar 

  7. 7.

    Isaak, D. J. et al. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl Acad. Sci. USA 113, 4374–4379 (2016).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. Lond. B 285, 20172214 (2018).

    Article  Google Scholar 

  9. 9.

    Fagan, W. F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249 (2002).

    Article  Google Scholar 

  10. 10.

    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones. Trends Ecol. Evol. 29, 390–397 (2014).

    Article  PubMed  Google Scholar 

  11. 11.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article  Google Scholar 

  12. 12.

    Giam, X. & Olden, J. D. Drivers and interrelationships among multiple dimensions of rarity for freshwater fishes. Ecography 41, 331–344 (2018).

    Article  Google Scholar 

  13. 13.

    Giam, X. & Olden, J. D. Environment and predation govern fish community assembly in temperate streams. Glob. Ecol. Biogeogr. 10, 1194–1205 (2016).

    Article  Google Scholar 

  14. 14.

    Gibson-Reinemer, D. K., Rahel, F. J., Albeke, S. E. & Fitzpatrick, R. M. Natural and anthropogenic barriers to climate tracking in river fishes along a mountain–plains transition zone. Divers. Distrib. 23, 761–770 (2017).

    Article  Google Scholar 

  15. 15.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article  Google Scholar 

  17. 17.

    Walters A. W., Mandeville C. P. & Rahel F. J. The interaction of exposure and warming tolerance determines fish species vulnerability to warming stream temperatures. Biol. Lett. 14, 20180342 (2018).

  18. 18.

    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).

    Article  Google Scholar 

  19. 19.

    Etnier, D. A. & Starnes, W. C. The Fishes of Tennessee (Univ. Tennessee Press, 1993).

  20. 20.

    Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The stream‐catchment (StreamCat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).

    Article  Google Scholar 

  21. 21.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  23. 23.

    Radinger, J. & Wolter, C. Patterns and predictors of fish dispersal in rivers. Fish Fish. 15, 456–473 (2014).

    Article  Google Scholar 

  24. 24.

    Rodríguez, M. A. Restricted movement in stream fish: the paradigm is incomplete, not lost. Ecology 83, 1–13 (2002).

    Article  Google Scholar 

  25. 25.

    Hawkes, C. Linking movement behaviour, dispersal and population processes: is individual variation a key? J. Anim. Ecol. 78, 894–906 (2009).

    Article  PubMed  Google Scholar 

  26. 26.

    Roberts, J. J., Fausch, K. D., Peterson, D. P. & Hooten, M. B. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Glob. Change Biol. 19, 1383–1398 (2013).

    Article  Google Scholar 

  27. 27.

    Isaak, D. J. & Rieman, B. E. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob. Change Biol. 19, 742–751 (2013).

    Article  Google Scholar 

  28. 28.

    Higgins, S. I. & Richardson, D. M. Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am. Nat. 153, 464–475 (1999).

    Article  PubMed  Google Scholar 

  29. 29.

    Pimm, S. L., Jones, L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).

    Article  Google Scholar 

  30. 30.

    Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).

    Article  Google Scholar 

  31. 31.

    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Benda, L. et al. The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience 54, 413–427 (2004).

    Article  Google Scholar 

  33. 33.

    Torgersen, C. E., Price, D. M., Li, H. W. & McIntosh, B. A. Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecol. Appl. 9, 301–319 (1999).

    Article  Google Scholar 

  34. 34.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1089 (2012).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Change Biol. 23, 728–736 (2017).

    Article  Google Scholar 

  38. 38.

    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. Lond. B 282, 20150401 (2015).

    Article  Google Scholar 

  39. 39.

    Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).

    Article  PubMed  Google Scholar 

  40. 40.

    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  PubMed  Google Scholar 

  41. 41.

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mulholland, P. J. et al. Effects of climate change on freshwater ecosystems of the south‐eastern United States and the Gulf Coast of Mexico. Hydrol. Process. 11, 949–970 (1997).

    Article  Google Scholar 

  43. 43.

    Sun, L. et al. Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment (US Department of Commerce, 2015).

  44. 44.

    Xenopoulos, M. A. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob. Change Biol. 11, 1557–1564 (2005).

    Article  Google Scholar 

  45. 45.

    Wenger, S. J., Luce, C. H., Hamlet, A. F., Isaak, D. J. & Neville, H. M. Macroscale hydrologic modeling of ecologically relevant flow metrics. Water Resour. Res. 46, W09513 (2010).

    Article  Google Scholar 

  46. 46.

    Seavy, N. E. et al. Why climate change makes riparian restoration more important than ever: recommendations for practice and research. Ecol. Restor. 27, 330–338 (2009).

    Article  Google Scholar 

  47. 47.

    Stanley, E. H. & Doyle, M. W. Trading off: the ecological effects of dam removal. Front. Ecol. Environ. 1, 15–22 (2003).

    Article  Google Scholar 

  48. 48.

    Noonan, M. J., Grant, J. W. & Jackson, C. D. A quantitative assessment of fish passage efficiency. Fish Fish. 13, 450–464 (2012).

    Article  Google Scholar 

  49. 49.

    Olden, J. D., Kennard, M. J., Lawler, J. J. & Poff, N. L. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conserv. Biol. 25, 40–47 (2011).

    Article  PubMed  Google Scholar 

  50. 50.

    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) Ch. 14 (Oxford Univ. Press, 2009).

  51. 51.

    Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. & Beissinger, S. R. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob. Change Biol. 18, 3279–3290 (2012).

    Article  Google Scholar 

  52. 52.

    Hasnain, S. S., Shuter, B. J. & Minns, C. K. Phylogeny influences the relationships linking key ecological thermal metrics for North American freshwater fish species. Can. J. Fish. Aquat. Sci. 70, 964–972 (2013).

    Article  Google Scholar 

  53. 53.

    Fluker, B. L., Kuhajda, B. R., Lang, N. J. & Harris, P. M. Low genetic diversity and small long-term population sizes in the spring endemic watercress darter, Etheostoma nuchale. Conserv. Genet. 11, 2267–2279 (2010).

    Article  Google Scholar 

  54. 54.

    Malone, E. W. et al. Which species, how many, and from where: integrating habitat suitability, population genomics, and abundance estimates into species reintroduction planning. Glob. Change Biol. 24, 3729–3748 (2018).

    Article  Google Scholar 

  55. 55.

    Nagel, D. et al. National Stream Internet Hydrography Network for Spatial-Stream-Network (SSN) Analysis: Rocky Mountain Research Station (US Forest Service Data Archive, 2017); https://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet/NSI_network.html.

  56. 56.

    McKay, L. et al. NHDPlus Version 2: User Guide (USEPA, 2012); http://nctc.fws.gov/courses/references/tutorials/geospatial/CSP7306/Readings/NHDPlusV2_User_Guide.pdf

  57. 57.

    USEPA Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (USFS, 2014).

  58. 58.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Article  PubMed  Google Scholar 

  59. 59.

    Lyons, J. et al. Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA. North Am. J. Fish. Manage. 29, 1130–1151 (2009).

    Article  Google Scholar 

  60. 60.

    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406 (2006).

    Article  Google Scholar 

  61. 61.

    DeWeber, J. T. & Wagner, T. A regional neural network ensemble for predicting mean daily river water temperature. J. Hydrol. 517, 187–200 (2014).

    Article  Google Scholar 

  62. 62.

    Hastie, T. J. & Tibshariani, R. J. Generalized Additive Models (Chapman & Hall, 1990).

  63. 63.

    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Article  Google Scholar 

  64. 64.

    Peterson, E. E. & Ver Hoef, J. M. A mixed‐model moving‐average approach to geostatistical modeling in stream networks. Ecology 91, 644–651 (2010).

    Article  PubMed  Google Scholar 

  65. 65.

    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 461–466 (2010).

    Article  Google Scholar 

  66. 66.

    Luce, C. et al. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 50, 3428–3443 (2014).

    Article  Google Scholar 

  67. 67.

    Dettinger, M. D. Projections and downscaling of 21st century temperatures, precipitation, radiative fluxes and winds for the Southwestern U.S., with focus on Lake Tahoe. Climatic Change 116, 17–33 (2012).

    Article  Google Scholar 

  68. 68.

    Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from Dutch radioactivity monitoring network. Comput. Geosci. 35, 1711–1721 (2009).

    CAS  Article  Google Scholar 

  69. 69.

    Frimpong, E. A., Huang, J. & Liang, Y. IchthyMaps: a database of historical distributions of freshwater fishes of the United States. Fisheries 41, 590–599 (2016).

    Article  Google Scholar 

  70. 70.

    Huang, J. & Frimpong, E. A. Using historical atlas data to develop high-resolution distribution models of freshwater fishes. PLoS ONE 10, e0129995 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article  PubMed  Google Scholar 

  72. 72.

    Guisan, A., Thuiller, W. & Zimmerman, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge Univ. Press, 2017).

  73. 73.

    Digital Distribution Maps of the Freshwater Fishes in the Conterminous United States (NatureServe, 2010).

  74. 74.

    Frimpong, E. A. & Angermeier, P. L. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34, 487–495 (2010).

    Article  Google Scholar 

  75. 75.

    TpsDig v.1.4 (Department of Ecology and Evolution, State University New York, 2004); http://life.bio.sunysb.edu/morph/index.html

  76. 76.

    Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).

    Article  Google Scholar 

  77. 77.

    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1–8 (2013).

    Article  Google Scholar 

  78. 78.

    Ostroff, A., Wieferich, D., Cooper, A. & Infante, D. National Anthropogenic Barrier Dataset (NABD, 2013).

Download references

Acknowledgements

We thank members of the Giam Lab at the University of Tennessee for field assistance and discussions that improved the manuscript. Financial support was provided by a University of Tennessee start-up grant (E-011080132) awarded to X.G.

Author information

Affiliations

Authors

Contributions

M.J.T. and X.G. designed the research. M.J.T. led collection of the data. A.L.K. and J.C.M. contributed to data collation. M.J.T. led data analyses and X.G. contributed to data analyses. M.J.T. and X.G. wrote the manuscript.

Corresponding authors

Correspondence to Matthew J. Troia or Xingli Giam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–6.

Reporting Summary

Supplementary Code 1

R script for fitting and projecting ENM for example species, E. chlorobranchium. The script uses two input datasets (Supplementary Dataset 3 and Supplementary Dataset 4), which are derived from the IchthyMaps dataset and the StreamCat dataset.

Supplementary Code 2

R script to identify upstream pathway with larger (mainstem) or smaller (tributary) catchment area of a focal reach. The script uses National Hydrography Dataset flowlines and associated attributes: ComID, UpHydroseq, DnHydroseq, Hydroseq, TotDASqKM.

Supplementary Dataset 1

Temperature parameters in the first sheet and definitions in the second sheet.

Supplementary Dataset 2

ENM habitat suitability in the first sheet and definitions in the second sheet.

Supplementary Dataset 3

Input dataset for environmental niche modelling script (see Supplementary Code 1).

Supplementary Dataset 4

Input dataset for environmental niche modelling script (see Supplementary Code 1).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Troia, M.J., Kaz, A.L., Niemeyer, J.C. et al. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat Ecol Evol 3, 1321–1330 (2019). https://doi.org/10.1038/s41559-019-0970-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing