Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatio-temporal climate change contributes to latitudinal diversity gradients

Abstract

The latitudinal diversity gradient (LDG), where the number of species increases from the poles to the Equator, ranks among the broadest and most notable biodiversity patterns on Earth. The pattern of species-rich tropics relative to species-poor temperate areas has been recognized for well over a century, but the generative mechanisms are still debated vigorously. We use simulations to test whether spatio-temporal climatic changes could generate large-scale patterns of biodiversity as a function of only three biological processes—speciation, extinction and dispersal—omitting adaptive niche evolution, diversity-dependence and coexistence limits. In our simulations, speciation resulted from range disjunctions, whereas extinction occurred when no suitable sites were accessible to species. Simulations generated clear LDGs that closely match empirical LDGs for three major vertebrate groups. Higher tropical diversity primarily resulted from higher low-latitude speciation, driven by spatio-temporal variation in precipitation rather than in temperature. This suggests that spatio-temporal changes in low-latitude precipitation prompted geographical range disjunctions over Earth’s history, leading to high rates of allopatric speciation that contributed to LDGs. Overall, we show that major global biodiversity patterns can derive from interactions of species’ niches (fixed a priori in our simulations) with dynamic climate across complex, existing landscapes, without invoking biotic interactions or niche-related adaptations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the process of speciation and extinction in the simulation framework.
Fig. 2: Standardized mean number of species per 1° latitudinal band with standard error bars.
Fig. 3: Mean speciation (top) and extinction (bottom) rate per latitudinal band.
Fig. 4: Distribution of bird, mammal, amphibian and virtual species in the present day.
Fig. 5: Frequency of shifts from temperate to tropical biomes and vice versa by virtual species.
Fig. 6: Mean contribution of climate parameters to speciation (top) and extinction (bottom) in each 1° latitudinal band.

Similar content being viewed by others

Data availability

All data are available via Dryad: https://doi.org/10.5061/dryad.m6h850q.

Code availability

Note that the soft code for the simulations is provided in Appendix 1 and is freely available for use.

References

  1. Fine, P. V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    Article  Google Scholar 

  2. Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article  PubMed  Google Scholar 

  3. Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article  Google Scholar 

  4. Valentine, J. W. & Jablonski, D. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 42, 997–1005 (2015).

    Article  Google Scholar 

  5. Roy, K., Jablonski, D. & Valentine, J. W. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc. Biol. Sci. 267, 293–299 (2006).

    Article  Google Scholar 

  6. Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qian, H. & Ricklefs, R. E. A latitudinal gradient in large‐scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737–744 (2007).

    Article  PubMed  Google Scholar 

  8. Cardillo, M. Latitude and rates of diversification in birds and butterflies. Proc. Biol. Sci. 266, 1221–1225 (1999).

    Article  PubMed Central  Google Scholar 

  9. Buckley, L. B. et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. Biol. Sci. 277, 2131–2138 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Powell, M. G. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16, 519–528 (2007).

    Article  Google Scholar 

  12. Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    Article  PubMed  Google Scholar 

  13. Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2011).

    Google Scholar 

  14. Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

    Article  PubMed  Google Scholar 

  15. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  16. Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  17. Stebbins, G. L Flowering Plants: Evolution Above the Species Level (Belknap Press, 1974).

  18. Chown, S. L. & Gaston, K. J. Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol. Evol. 15, 311–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gaston, K. J. & Blackburn, T. M. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proc. Biol. Sci. 263, 63–68 (1996).

    Article  Google Scholar 

  21. Arita, H. T. & Vázquez‐Domínguez, E. The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecol. Lett. 11, 653–663 (2008).

    Article  PubMed  Google Scholar 

  22. Roy, K. & Goldberg, E. E. Origination, extinction, and dispersal: integrative models for understanding present-day diversity gradients. Am. Nat. 170, S71–S85 (2007).

    Article  PubMed  Google Scholar 

  23. Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. & Reeder, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596 (2006).

    Article  PubMed  Google Scholar 

  24. Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. Biol. Sci. 280, 20131622 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Jablonski, D., Huang, S., Roy, K. & Valentine, J. W. Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. Am. Nat. 189, 1–12 (2017).

    Article  PubMed  Google Scholar 

  26. Tittensor, D. P. & Worm, B. A neutral‐metabolic theory of latitudinal biodiversity. Glob. Ecol. Biogeogr. 25, 630–641 (2016).

    Article  Google Scholar 

  27. Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distribution driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rangel, T. F. L., Diniz‐Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

    Article  PubMed  Google Scholar 

  29. Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).

    Article  PubMed  CAS  Google Scholar 

  30. Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).

    Article  Google Scholar 

  31. Haffer, J. & Prance, G. T. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579–608 (2001).

    Google Scholar 

  32. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    Article  PubMed  Google Scholar 

  33. Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. Camb. Philos. Soc. 90, 1248–1262 (2015).

    Article  PubMed  Google Scholar 

  34. Strubbe, D., Beauchard, O. & Matthysen, E. Niche conservatism among non‐native vertebrates in Europe and North America. Ecography 38, 321–329 (2015).

    Article  Google Scholar 

  35. Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Saupe, E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. Biol. Sci. 281, 20141995 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Barnes, R. & Clark, A. T. Sixty-five million years of change in temperature and topography explain evolutionary history in eastern North American plethodontid salamanders. Am. Nat. 190, E1–E12 (2017).

    Article  PubMed  Google Scholar 

  38. Rahbek, C. et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. Biol. Sci. 274, 165–174 (2007).

    PubMed  Google Scholar 

  39. Cowling, S. A., Maslin, M. A. & Sykes, M. T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat. Res. 55, 140–149 (2001).

    Article  CAS  Google Scholar 

  40. Gotelli, N. J. et al. Patterns and causes of species richness: a general simulation model for macroecology. Ecol. Lett. 12, 873–886 (2009).

    Article  PubMed  Google Scholar 

  41. Connolly, S. R., Keith, S. A., Colwell, R. K. & Rahbek, C. Process, mechanism, and modeling in macroecology. Trends Ecol. Evol. 32, 835–844 (2017).

    Article  PubMed  Google Scholar 

  42. Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).

    Article  Google Scholar 

  43. Cabral, J. S., Valente, L. & Hartig, F. Mechanistic simulation models in macroecology and biogeography: state‐of‐art and prospects. Ecography 40, 267–280 (2017).

    Article  Google Scholar 

  44. Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomašových, A. & Jablonski, D. Decoupling of latitudinal gradients in species and genus geographic range size: a signature of clade range expansion. Glob. Ecol. Biogeogr. 26, 288–303 (2017).

    Article  Google Scholar 

  46. Anderson, S. Geographic Ranges of North American Terrestrial Mammals (American Museum of Natural History, 1977).

  47. Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Evol. Syst. 27, 597–624 (1996).

    Article  Google Scholar 

  48. Gaston, K. J. Species-range-size distributions: patterns, mechanisms and implications. Trends Ecol. Evol. 11, 197–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Jansson, R., Rodríguez‐Castañeda, G. & Harding, L. E. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67, 1741–1755 (2013).

    Article  PubMed  Google Scholar 

  51. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  52. Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford Univ. Press, 2007).

  53. Baselga, A., Lobo, J. M., Svenning, J. C., Aragón, P. & Araújo, M. B. Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Glob. Ecol. Biogeogr. 21, 1106–1113 (2012).

    Article  Google Scholar 

  54. Davies, T. J. et al. Colloquium paper: phylogenetic trees and the future of mammalian biodiversity. Proc. Natl Acad. Sci. USA 105, 11556–11563 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davies, T. J., Buckley, L. B., Grenyer, R. & Gittleman, J. L. The influence of past and present climate on the biogeography of modern mammal diversity. Philos. Trans. R. Soc. Lond. B 366, 2526–2535 (2011).

    Article  Google Scholar 

  56. Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Article  Google Scholar 

  57. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Biol. Sci. 278, 1823–1830 (2011).

    PubMed  Google Scholar 

  58. Hillman, S. S., Drewes, R. C., Hedrick, M. S. & Hancock, T. V. Physiological vagility: correlations with dispersal and population genetic structure of amphibians. Physiol. Biochem. Zool. 87, 105–112 (2014).

    Article  PubMed  Google Scholar 

  59. Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

  63. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  64. Fischer, A. G. Latitudinal variations in organic diversity. Evolution 14, 64–81 (1960).

    Article  Google Scholar 

  65. Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hawkins, B. A., Diniz-Filho, J. A. F., Jaramillo, C. A. & Soeller, S. A. Post-Eocene climate change, niche conservatism and the latitudinal diversity gradient of New World birds. J. Biogeogr. 33, 770–780 (2006).

    Article  Google Scholar 

  67. Simpson, G. G. Species density of North American recent mammals. Syst. Zool. 13, 57–73 (1964).

    Article  Google Scholar 

  68. Wallace, A. R. Tropical Nature, and Other Essays (Macmillan, 1878).

  69. Vrba, E. S. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol. Ecol. 1, 283–300 (1987).

    Article  Google Scholar 

  70. Vrba, E. S. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81, 229–236 (1985).

    Google Scholar 

  71. Carmichael, M. J. et al. A model–model and data–model comparison for the early Eocene hydrological cycle. Clim. Past 12, 455–481 (2016).

    Article  Google Scholar 

  72. Carmichael, M. J. et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Glob. Planet. Change 157, 114–138 (2017).

    Article  Google Scholar 

  73. Webb, T. & Bartlein, P. J. Global changes during the last 3 million years: climatic controls and biotic responses. Annu. Rev. Ecol. Syst. 23, 141–173 (1992).

    Article  Google Scholar 

  74. Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Jablonski, D. Colloquium paper: extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. USA 105, 11528–11535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Powell, M. G. The latitudinal diversity gradient of brachiopods over the past 530 million years. J. Geol. 117, 585–594 (2009).

    Article  Google Scholar 

  77. Kiel, S. & Nielsen, S. N. Quaternary origin of the inverse latitudinal diversity gradient among southern Chilean mollusks. Geology 38, 955–958 (2010).

    Article  Google Scholar 

  78. Archibald, S. B., Bossert, W. H., Greenwood, D. R. & Farrell, B. D. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36, 374–398 (2010).

    Article  Google Scholar 

  79. Krug, A. Z., Jablonski, D., Valentine, J. W. & Roy, K. Generation of Earth’s first-order biodiversity pattern. Astrobiology 9, 113–124 (2009).

    Article  PubMed  Google Scholar 

  80. Jetz, W. & Fine, P. V. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article  Google Scholar 

  82. Ezard, T. H. & Purvis, A. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition. Ecol. Lett. 19, 899–906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pigot, A. L., Tobias, J. A. & Jetz, W. Energetic constraints on species coexistence in birds. PLoS Biol. 14, e1002407 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Romdal, T. S., Colwell, R. K. & Rahbek, C. The influence of band sum area, domain extent, and range sizes on the latitudinal mid‐domain effect. Ecology 86, 235–244 (2005).

    Article  Google Scholar 

  87. Tittensor, D. P. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lyons, S. K. & Willig, M. R. Species richness, latitude, and scale‐sensitivity. Ecology 83, 47–58 (2002).

    Article  Google Scholar 

  90. Kaspari, M., Yuan, M. & Alonso, L. Spatial grain and the causes of regional diversity gradients in ants. Am. Nat. 161, 459–477 (2003).

    Article  PubMed  Google Scholar 

  91. Lira‐Noriega, A., Soberón, J., Navarro‐Sigüenza, A. G., Nakazawa, Y. & Peterson, A. T. Scale dependency of diversity components estimated from primary biodiversity data and distribution maps. Divers. Distrib. 13, 185–195 (2007).

    Article  Google Scholar 

  92. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  93. New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).

    Article  Google Scholar 

  94. Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188, 149–162 (2016).

    Article  PubMed  Google Scholar 

  95. Tomašových, A., Jablonski, D., Berke, S. K., Krug, A. Z. & Valentine, J. W. Nonlinear thermal gradients shape broad‐scale patterns in geographic range size and can reverse Rapoport’s rule. Glob. Ecol. Biogeogr. 24, 157–167 (2015).

    Article  Google Scholar 

  96. Hijmans, R., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).

    Google Scholar 

  97. Saupe, E. E. et al. Non‐random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Glob. Ecol. Biogeogr. 28, 928–942 (2019).

    Article  Google Scholar 

  98. Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article  PubMed  Google Scholar 

  100. Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).

    Article  Google Scholar 

  101. Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).

    Article  CAS  Google Scholar 

  102. Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singarayer, J. S., Valdes, P. J. & Roberts, W. H. G. Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Sci. Rep. 7, 9382 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Davies-Barnard, T., Ridgwell, A., Singarayer, J. S. & Valdes, P. J. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).

    Article  Google Scholar 

  105. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  CAS  Google Scholar 

  106. Liow, L. H. & Stenseth, N. C. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proc. Biol. Sci. 274, 2745–2752 (2007).

    PubMed  PubMed Central  Google Scholar 

  107. Webb, T. J. & Gaston, K. J. Geographic range size and evolutionary age in birds. Proc. Biol. Sci. 267, 1843–1850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Avise, J. C. & Walker, D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc. Biol. Sci. 265, 457–463 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hendry, A. P., Nosil, P. & Rieseberg, L. H. The speed of ecological speciation. Funct. Ecol. 21, 455–464 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Johnson, N. K. & Cicero, C. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution 58, 1122–1130 (2004).

    Article  PubMed  Google Scholar 

  112. Knowles, L. L. & Alvarado-Serrano, D. F. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Mol. Ecol. 19, 3727–3745 (2010).

    Article  PubMed  Google Scholar 

  113. Lande, R. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116, 463–479 (1980).

    Article  Google Scholar 

  114. Valentine J. W. in Phanerozoic Diversity Patterns (ed. Valentine, J. W.) Ch. 14, 419–424 (Princeton Univ. Press, 1985).

  115. Lamb, H. H. Climate: Present, Past and Future Vol. 1 (Routledge, 1972).

  116. Prentice, K. C. Bioclimatic distribution of vegetation for general circulation model studies. J. Geophys. Res. 95, 11811–11830 (1990).

    Article  Google Scholar 

  117. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Hijmans R. J. et al. raster: Geographic data analysis and modeling. R package version 2.5-8 https://mran.microsoft.com/snapshot/2016-08-05/web/packages/raster/index.html (2016).

  120. Alt, H. & Godau, M. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995).

    Article  Google Scholar 

  121. Toohey K. SimilarityMeasures: trajectory similarity measures. R package version 1.4 https://cran.r-project.org/web/packages/SimilarityMeasures/SimilarityMeasures.pdf (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Colwell (University of Connecticut) and F. Condamine (Centre national de la recherche scientifique) for comments that greatly improved our contribution. We are indebted to D. Hill (Leeds), P. Wignall (Leeds) and R. Benson (Oxford) for thoughtful discussions that informed this manuscript. H.Q. was supported by the National Key Research and Development Project of China (no. 2017YFC1200603) and Natural Science Foundation of China (no. 31772432). E.E.S. acknowledges funding from a Division of Earth Sciences National Science Foundation (NSF) Postdoctoral Fellowship and Leverhulme grant no. DGR01020. C.E.M. acknowledges funding from the NSF (no. 1601878).

Author information

Authors and Affiliations

Authors

Contributions

E.E.S. designed the study. E.E.S. and H.Q. performed the analyses. J.Si. and P.V. provided the climate data and analysis. E.E.S. and H.Q. analysed the results. E.E.S. wrote the first draft of the manuscript and all authors (C.E.M., A.T.P., J.So., J.Si., P.V. and H.Q.) contributed to the revisions.

Corresponding authors

Correspondence to Erin E. Saupe or Huijie Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Simulation protocol, Supplementary Tables 1–5 and Supplementary Figs. 1–60.

Reporting Summary

Supplementary code (Appendix 1)

Overview of the EcoEvo Simulator (EES) framework.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saupe, E.E., Myers, C.E., Townsend Peterson, A. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat Ecol Evol 3, 1419–1429 (2019). https://doi.org/10.1038/s41559-019-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0962-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing