Spatio-temporal climate change contributes to latitudinal diversity gradients

Article metrics

Abstract

The latitudinal diversity gradient (LDG), where the number of species increases from the poles to the Equator, ranks among the broadest and most notable biodiversity patterns on Earth. The pattern of species-rich tropics relative to species-poor temperate areas has been recognized for well over a century, but the generative mechanisms are still debated vigorously. We use simulations to test whether spatio-temporal climatic changes could generate large-scale patterns of biodiversity as a function of only three biological processes—speciation, extinction and dispersal—omitting adaptive niche evolution, diversity-dependence and coexistence limits. In our simulations, speciation resulted from range disjunctions, whereas extinction occurred when no suitable sites were accessible to species. Simulations generated clear LDGs that closely match empirical LDGs for three major vertebrate groups. Higher tropical diversity primarily resulted from higher low-latitude speciation, driven by spatio-temporal variation in precipitation rather than in temperature. This suggests that spatio-temporal changes in low-latitude precipitation prompted geographical range disjunctions over Earth’s history, leading to high rates of allopatric speciation that contributed to LDGs. Overall, we show that major global biodiversity patterns can derive from interactions of species’ niches (fixed a priori in our simulations) with dynamic climate across complex, existing landscapes, without invoking biotic interactions or niche-related adaptations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the process of speciation and extinction in the simulation framework.
Fig. 2: Standardized mean number of species per 1° latitudinal band with standard error bars.
Fig. 3: Mean speciation (top) and extinction (bottom) rate per latitudinal band.
Fig. 4: Distribution of bird, mammal, amphibian and virtual species in the present day.
Fig. 5: Frequency of shifts from temperate to tropical biomes and vice versa by virtual species.
Fig. 6: Mean contribution of climate parameters to speciation (top) and extinction (bottom) in each 1° latitudinal band.

Data availability

All data are available via Dryad: https://doi.org/10.5061/dryad.m6h850q.

Code availability

Note that the soft code for the simulations is provided in Appendix 1 and is freely available for use.

References

  1. 1.

    Fine, P. V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

  2. 2.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

  3. 3.

    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

  4. 4.

    Valentine, J. W. & Jablonski, D. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 42, 997–1005 (2015).

  5. 5.

    Roy, K., Jablonski, D. & Valentine, J. W. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc. Biol. Sci. 267, 293–299 (2006).

  6. 6.

    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).

  7. 7.

    Qian, H. & Ricklefs, R. E. A latitudinal gradient in large‐scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737–744 (2007).

  8. 8.

    Cardillo, M. Latitude and rates of diversification in birds and butterflies. Proc. Biol. Sci. 266, 1221–1225 (1999).

  9. 9.

    Buckley, L. B. et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. Biol. Sci. 277, 2131–2138 (2010).

  10. 10.

    Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).

  11. 11.

    Powell, M. G. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16, 519–528 (2007).

  12. 12.

    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

  13. 13.

    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2011).

  14. 14.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

  15. 15.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

  16. 16.

    Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

  17. 17.

    Stebbins, G. L Flowering Plants: Evolution Above the Species Level (Belknap Press, 1974).

  18. 18.

    Chown, S. L. & Gaston, K. J. Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol. Evol. 15, 311–315 (2000).

  19. 19.

    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

  20. 20.

    Gaston, K. J. & Blackburn, T. M. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proc. Biol. Sci. 263, 63–68 (1996).

  21. 21.

    Arita, H. T. & Vázquez‐Domínguez, E. The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecol. Lett. 11, 653–663 (2008).

  22. 22.

    Roy, K. & Goldberg, E. E. Origination, extinction, and dispersal: integrative models for understanding present-day diversity gradients. Am. Nat. 170, S71–S85 (2007).

  23. 23.

    Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. & Reeder, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596 (2006).

  24. 24.

    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. Biol. Sci. 280, 20131622 (2013).

  25. 25.

    Jablonski, D., Huang, S., Roy, K. & Valentine, J. W. Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. Am. Nat. 189, 1–12 (2017).

  26. 26.

    Tittensor, D. P. & Worm, B. A neutral‐metabolic theory of latitudinal biodiversity. Glob. Ecol. Biogeogr. 25, 630–641 (2016).

  27. 27.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distribution driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

  28. 28.

    Rangel, T. F. L., Diniz‐Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

  29. 29.

    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).

  30. 30.

    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).

  31. 31.

    Haffer, J. & Prance, G. T. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579–608 (2001).

  32. 32.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

  33. 33.

    Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. Camb. Philos. Soc. 90, 1248–1262 (2015).

  34. 34.

    Strubbe, D., Beauchard, O. & Matthysen, E. Niche conservatism among non‐native vertebrates in Europe and North America. Ecography 38, 321–329 (2015).

  35. 35.

    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

  36. 36.

    Saupe, E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. Biol. Sci. 281, 20141995 (2014).

  37. 37.

    Barnes, R. & Clark, A. T. Sixty-five million years of change in temperature and topography explain evolutionary history in eastern North American plethodontid salamanders. Am. Nat. 190, E1–E12 (2017).

  38. 38.

    Rahbek, C. et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. Biol. Sci. 274, 165–174 (2007).

  39. 39.

    Cowling, S. A., Maslin, M. A. & Sykes, M. T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat. Res. 55, 140–149 (2001).

  40. 40.

    Gotelli, N. J. et al. Patterns and causes of species richness: a general simulation model for macroecology. Ecol. Lett. 12, 873–886 (2009).

  41. 41.

    Connolly, S. R., Keith, S. A., Colwell, R. K. & Rahbek, C. Process, mechanism, and modeling in macroecology. Trends Ecol. Evol. 32, 835–844 (2017).

  42. 42.

    Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).

  43. 43.

    Cabral, J. S., Valente, L. & Hartig, F. Mechanistic simulation models in macroecology and biogeography: state‐of‐art and prospects. Ecography 40, 267–280 (2017).

  44. 44.

    Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).

  45. 45.

    Tomašových, A. & Jablonski, D. Decoupling of latitudinal gradients in species and genus geographic range size: a signature of clade range expansion. Glob. Ecol. Biogeogr. 26, 288–303 (2017).

  46. 46.

    Anderson, S. Geographic Ranges of North American Terrestrial Mammals (American Museum of Natural History, 1977).

  47. 47.

    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Evol. Syst. 27, 597–624 (1996).

  48. 48.

    Gaston, K. J. Species-range-size distributions: patterns, mechanisms and implications. Trends Ecol. Evol. 11, 197–201 (1996).

  49. 49.

    Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

  50. 50.

    Jansson, R., Rodríguez‐Castañeda, G. & Harding, L. E. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67, 1741–1755 (2013).

  51. 51.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  52. 52.

    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford Univ. Press, 2007).

  53. 53.

    Baselga, A., Lobo, J. M., Svenning, J. C., Aragón, P. & Araújo, M. B. Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Glob. Ecol. Biogeogr. 21, 1106–1113 (2012).

  54. 54.

    Davies, T. J. et al. Colloquium paper: phylogenetic trees and the future of mammalian biodiversity. Proc. Natl Acad. Sci. USA 105, 11556–11563 (2008).

  55. 55.

    Davies, T. J., Buckley, L. B., Grenyer, R. & Gittleman, J. L. The influence of past and present climate on the biogeography of modern mammal diversity. Philos. Trans. R. Soc. Lond. B 366, 2526–2535 (2011).

  56. 56.

    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

  57. 57.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Biol. Sci. 278, 1823–1830 (2011).

  58. 58.

    Hillman, S. S., Drewes, R. C., Hedrick, M. S. & Hancock, T. V. Physiological vagility: correlations with dispersal and population genetic structure of amphibians. Physiol. Biochem. Zool. 87, 105–112 (2014).

  59. 59.

    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229 (2014).

  60. 60.

    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).

  61. 61.

    Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204–207 (2017).

  62. 62.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

  63. 63.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

  64. 64.

    Fischer, A. G. Latitudinal variations in organic diversity. Evolution 14, 64–81 (1960).

  65. 65.

    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

  66. 66.

    Hawkins, B. A., Diniz-Filho, J. A. F., Jaramillo, C. A. & Soeller, S. A. Post-Eocene climate change, niche conservatism and the latitudinal diversity gradient of New World birds. J. Biogeogr. 33, 770–780 (2006).

  67. 67.

    Simpson, G. G. Species density of North American recent mammals. Syst. Zool. 13, 57–73 (1964).

  68. 68.

    Wallace, A. R. Tropical Nature, and Other Essays (Macmillan, 1878).

  69. 69.

    Vrba, E. S. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol. Ecol. 1, 283–300 (1987).

  70. 70.

    Vrba, E. S. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81, 229–236 (1985).

  71. 71.

    Carmichael, M. J. et al. A model–model and data–model comparison for the early Eocene hydrological cycle. Clim. Past 12, 455–481 (2016).

  72. 72.

    Carmichael, M. J. et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Glob. Planet. Change 157, 114–138 (2017).

  73. 73.

    Webb, T. & Bartlein, P. J. Global changes during the last 3 million years: climatic controls and biotic responses. Annu. Rev. Ecol. Syst. 23, 141–173 (1992).

  74. 74.

    Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).

  75. 75.

    Jablonski, D. Colloquium paper: extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. USA 105, 11528–11535 (2008).

  76. 76.

    Powell, M. G. The latitudinal diversity gradient of brachiopods over the past 530 million years. J. Geol. 117, 585–594 (2009).

  77. 77.

    Kiel, S. & Nielsen, S. N. Quaternary origin of the inverse latitudinal diversity gradient among southern Chilean mollusks. Geology 38, 955–958 (2010).

  78. 78.

    Archibald, S. B., Bossert, W. H., Greenwood, D. R. & Farrell, B. D. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36, 374–398 (2010).

  79. 79.

    Krug, A. Z., Jablonski, D., Valentine, J. W. & Roy, K. Generation of Earth’s first-order biodiversity pattern. Astrobiology 9, 113–124 (2009).

  80. 80.

    Jetz, W. & Fine, P. V. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).

  81. 81.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

  82. 82.

    Ezard, T. H. & Purvis, A. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition. Ecol. Lett. 19, 899–906 (2016).

  83. 83.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

  84. 84.

    Pigot, A. L., Tobias, J. A. & Jetz, W. Energetic constraints on species coexistence in birds. PLoS Biol. 14, e1002407 (2016).

  85. 85.

    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

  86. 86.

    Romdal, T. S., Colwell, R. K. & Rahbek, C. The influence of band sum area, domain extent, and range sizes on the latitudinal mid‐domain effect. Ecology 86, 235–244 (2005).

  87. 87.

    Tittensor, D. P. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  88. 88.

    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

  89. 89.

    Lyons, S. K. & Willig, M. R. Species richness, latitude, and scale‐sensitivity. Ecology 83, 47–58 (2002).

  90. 90.

    Kaspari, M., Yuan, M. & Alonso, L. Spatial grain and the causes of regional diversity gradients in ants. Am. Nat. 161, 459–477 (2003).

  91. 91.

    Lira‐Noriega, A., Soberón, J., Navarro‐Sigüenza, A. G., Nakazawa, Y. & Peterson, A. T. Scale dependency of diversity components estimated from primary biodiversity data and distribution maps. Divers. Distrib. 13, 185–195 (2007).

  92. 92.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

  93. 93.

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).

  94. 94.

    Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188, 149–162 (2016).

  95. 95.

    Tomašových, A., Jablonski, D., Berke, S. K., Krug, A. Z. & Valentine, J. W. Nonlinear thermal gradients shape broad‐scale patterns in geographic range size and can reverse Rapoport’s rule. Glob. Ecol. Biogeogr. 24, 157–167 (2015).

  96. 96.

    Hijmans, R., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).

  97. 97.

    Saupe, E. E. et al. Non‐random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Glob. Ecol. Biogeogr. 28, 928–942 (2019).

  98. 98.

    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).

  99. 99.

    Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

  100. 100.

    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).

  101. 101.

    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).

  102. 102.

    Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012).

  103. 103.

    Singarayer, J. S., Valdes, P. J. & Roberts, W. H. G. Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Sci. Rep. 7, 9382 (2017).

  104. 104.

    Davies-Barnard, T., Ridgwell, A., Singarayer, J. S. & Valdes, P. J. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).

  105. 105.

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

  106. 106.

    Liow, L. H. & Stenseth, N. C. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proc. Biol. Sci. 274, 2745–2752 (2007).

  107. 107.

    Webb, T. J. & Gaston, K. J. Geographic range size and evolutionary age in birds. Proc. Biol. Sci. 267, 1843–1850 (2000).

  108. 108.

    Avise, J. C. & Walker, D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc. Biol. Sci. 265, 457–463 (1998).

  109. 109.

    Hendry, A. P., Nosil, P. & Rieseberg, L. H. The speed of ecological speciation. Funct. Ecol. 21, 455–464 (2007).

  110. 110.

    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).

  111. 111.

    Johnson, N. K. & Cicero, C. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution 58, 1122–1130 (2004).

  112. 112.

    Knowles, L. L. & Alvarado-Serrano, D. F. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Mol. Ecol. 19, 3727–3745 (2010).

  113. 113.

    Lande, R. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116, 463–479 (1980).

  114. 114.

    Valentine J. W. in Phanerozoic Diversity Patterns (ed. Valentine, J. W.) Ch. 14, 419–424 (Princeton Univ. Press, 1985).

  115. 115.

    Lamb, H. H. Climate: Present, Past and Future Vol. 1 (Routledge, 1972).

  116. 116.

    Prentice, K. C. Bioclimatic distribution of vegetation for general circulation model studies. J. Geophys. Res. 95, 11811–11830 (1990).

  117. 117.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

  118. 118.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

  119. 119.

    Hijmans R. J. et al. raster: Geographic data analysis and modeling. R package version 2.5-8 https://mran.microsoft.com/snapshot/2016-08-05/web/packages/raster/index.html (2016).

  120. 120.

    Alt, H. & Godau, M. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995).

  121. 121.

    Toohey K. SimilarityMeasures: trajectory similarity measures. R package version 1.4 https://cran.r-project.org/web/packages/SimilarityMeasures/SimilarityMeasures.pdf (2015).

Download references

Acknowledgements

We thank R. Colwell (University of Connecticut) and F. Condamine (Centre national de la recherche scientifique) for comments that greatly improved our contribution. We are indebted to D. Hill (Leeds), P. Wignall (Leeds) and R. Benson (Oxford) for thoughtful discussions that informed this manuscript. H.Q. was supported by the National Key Research and Development Project of China (no. 2017YFC1200603) and Natural Science Foundation of China (no. 31772432). E.E.S. acknowledges funding from a Division of Earth Sciences National Science Foundation (NSF) Postdoctoral Fellowship and Leverhulme grant no. DGR01020. C.E.M. acknowledges funding from the NSF (no. 1601878).

Author information

E.E.S. designed the study. E.E.S. and H.Q. performed the analyses. J.Si. and P.V. provided the climate data and analysis. E.E.S. and H.Q. analysed the results. E.E.S. wrote the first draft of the manuscript and all authors (C.E.M., A.T.P., J.So., J.Si., P.V. and H.Q.) contributed to the revisions.

Correspondence to Erin E. Saupe or Huijie Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Simulation protocol, Supplementary Tables 1–5 and Supplementary Figs. 1–60.

Reporting Summary

Supplementary code (Appendix 1)

Overview of the EcoEvo Simulator (EES) framework.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading