Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Population differences in aggression are shaped by tropical cyclone-induced selection

Abstract

Extreme events, such as tropical cyclones, are destructive and influential forces. However, observing and recording the ecological effects of these statistically improbable, yet profound ‘black swan’ weather events is logistically difficult. By anticipating the trajectory of tropical cyclones, and sampling populations before and after they make landfall, we show that these extreme events select for more aggressive colony phenotypes in the group-living spider Anelosimus studiosus. This selection is great enough to drive regional variation in colony phenotypes, despite the fact that tropical cyclone strikes are irregular, occurring only every few years, even in particularly prone regions. These data provide compelling evidence for tropical cyclone-induced selection driving the evolution of an important functional trait and show that black swan events contribute to within-species diversity and local adaptation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of tropical cyclones on colony fecundity.
Fig. 2: The effect of local cyclone frequencies on colony aggression.

Similar content being viewed by others

Data availability

All raw data are available in Supplementary Dataset 1.

References

  1. Woolbright, L. L. Biotropica 23, 462 (1991).

    Article  Google Scholar 

  2. Vilella, F. J. & Fogarty, J. H. Caribb. J. Sci. 41, 157–162 (2005).

    Google Scholar 

  3. Dobbs, R. C. et al. Wetlands 29, 123–134 (2009).

    Article  Google Scholar 

  4. Butt, N. et al. Glob. Change Biol. 21, 3267–3277 (2015).

    Article  Google Scholar 

  5. Schoener, T. W., Spiller, D. A. & Losos, J. B. Proc. Natl Acad. Sci. USA 101, 177–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dodd, C. K. & Dreslik, M. J. J. Zool. 275, 18–25 (2008).

    Article  Google Scholar 

  7. Saïd, S. & Servanty, S. Landsc. Ecol. 20, 1003–1012 (2005).

    Article  Google Scholar 

  8. Taleb, N. N. The Black Swan: The Impact of the Highly Improbable (Random House, 2007).

  9. Ploetz, R. C., Hulcr, J., Wingfield, M. J. & de Beer, Z. W. Plant Dis. 97, 856–872 (2013).

    Article  PubMed  Google Scholar 

  10. Gaines, S. D. & Denny, M. W. Ecology 74, 1677–1692 (1993).

    Article  Google Scholar 

  11. Knutson, T. R. et al. Nat. Geosci. 3, 157–163 (2010).

    Article  CAS  Google Scholar 

  12. Pruitt, J. N. & Goodnight, C. J. Nature 514, 359–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Pruitt, J. N. & Riechert, S. E. Proc. Biol. Sci. 278, 1209–1215 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pruitt, J. N. & Riechert, S. E. Behav. Ecol. Sociobiol. 65, 1055–1060 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pruitt, J. N., Riechert, S. E. & Jones, T. C. Anim. Behav. 76, 871–879 (2008).

    Article  Google Scholar 

  16. Pruitt, J. N. & Riechert, S. E. Evolution 63, 2966–2973 (2009).

    Article  PubMed  Google Scholar 

  17. Pruitt, J. N. & Riechert, S. E. Anim. Behav. 78, 175–181 (2009).

    Article  Google Scholar 

  18. Pruitt, J. N. Ecol. Lett. 15, 1026–1032 (2012).

    Article  PubMed  Google Scholar 

  19. Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Nat. Ecol. Evol. 2, 1298 (2018).

    Article  PubMed  Google Scholar 

  20. Schowalter, T. D., Willig, M. R. & Presley, S. J. For. Ecol. Manag. 332, 93–102 (2014).

    Article  Google Scholar 

  21. Torres, J. A. Acta Cient. 2, 40–44 (1988).

    Google Scholar 

  22. Pruitt, J. N. Ecol. Lett. 16, 879–886 (2013).

    Article  PubMed  Google Scholar 

  23. Pruitt, J. N., Goodnight, C. J. & Riechert, S. E. Anim. Behav. 124, 15–24 (2017).

    Article  Google Scholar 

  24. Krafft, B., Horel, A. & Julita, J. M. J. Arachnol. 14, 219–226 (1986).

    Google Scholar 

  25. Riechert, S. E. Am. Nat. 117, 871–892 (1981).

    Article  Google Scholar 

  26. Riechert, S. E. Fla. Entomol. 68, 105 (1985).

    Article  Google Scholar 

  27. Torres, J. A. J. Trop. Ecol. 8, 285–298 (1992).

    Article  Google Scholar 

  28. Donihue, C. M. et al. Nature 560, 88–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Brach, V. Evolution 31, 154–161 (1977).

    Article  PubMed  Google Scholar 

  30. Jones, T. C., Riechert, S. E., Dalrymple, S. E. & Parker, P. G. Anim. Behav. 73, 195–204 (2007).

    Article  Google Scholar 

  31. Jones, T. C. & Parker, P. G. Behav. Ecol. 13, 142–148 (2002).

    Article  Google Scholar 

  32. Pruitt, J. N., Grinsted, L. & Settepani, V. Anim. Behav. 86, 391–399 (2013).

    Article  Google Scholar 

  33. Keiser, C. N., Jones, D. K., Modlmeier, A. P. & Pruitt, J. N. Behav. Ecol. Sociobiol. 68, 839–850 (2014).

    Article  Google Scholar 

  34. Brooks, M. E. et al. R J. 9, 378–400 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Tri-agency Institutional Programs Secretariat Canada 150 Chairs Program.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by A.G.L. and J.N.P. A.G.L., D.N.F., T.W.P. and J.N.P planned the project. J.N.P. and T.W.S. supervised the project. J.N.P. and A.G.L. carried out the research and experimental work. A.G.L. and D.N.F. analysed the data. A.G.L. wrote the first draft. A.G.L, D.N.F., T.W.S. and J.N.P. reviewed and edited it.

Corresponding author

Correspondence to Jonathan N. Pruitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1 and 2, and methods.

Reporting Summary

Supplementary Dataset 1

The complete data file for the analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, A.G., Fisher, D.N., Schoener, T.W. et al. Population differences in aggression are shaped by tropical cyclone-induced selection. Nat Ecol Evol 3, 1294–1297 (2019). https://doi.org/10.1038/s41559-019-0951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0951-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing