Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Parsimony diagram representing the relative evidence for different explanations behind declines in foliar [N] and δ15N.

References

  1. 1.

    Hiltbrunner, E., Körner, C., Meier, R., Braun, S. & Kahmen, A. Data do not support large-scale oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0948-5 (2019).

    Article  Google Scholar 

  2. 2.

    Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  PubMed  Google Scholar 

  3. 3.

    Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    Article  Google Scholar 

  4. 4.

    Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).

    Article  Google Scholar 

  5. 5.

    McLauchlan, K. K. et al. Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Sci. Rep. 7, 7856 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334, 1545–1548 (2011).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W. & Craine, J. M. Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. New Phytol. 187, 1135–1145 (2010).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Elliott, E. M., Yu, Z., Cole, A. S. & Coughlin, J. G. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. Sci. Total Environ. 662, 393–403 (2019).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hogberg, P. Development of nitrogen-15 enrichment in a nitrogen-fertilized forest soil-plant system. Soil Biol. Biochem. 23, 335–338 (1991).

    Article  Google Scholar 

  10. 10.

    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    BassiriRad, H. et al. Widespread foliage delta N-15 depletion under elevated CO2: inferences for the nitrogen cycle. Glob. Change Biol. 9, 1582–1590 (2003).

    Article  Google Scholar 

  12. 12.

    Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Groffman, P. M. et al. Nitrogen oligotrophication in northern hardwood forests. Biogeochemistry 141, 523–539 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Craine, J. M., Elmore, A. & Angerer, J. P. Long-term declines in dietary nutritional quality for North American cattle. Environ. Res. Lett. 12, 044019 (2017).

    Article  Google Scholar 

  15. 15.

    Ziska, L. H. et al. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. R. Soc. B 283, 20160414 (2016).

    Article  PubMed  Google Scholar 

  16. 16.

    Gruneberg, E., Ziche, D. & Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob. Change Biol. 20, 2644–2662 (2014).

    Article  Google Scholar 

  17. 17.

    Durán, J. et al. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests. Ecosphere 7, e01251 (2016).

    Article  Google Scholar 

  18. 18.

    Eshleman, K. N., Sabo, R. D. & Kline, K. M. Surface water quality is improving due to declining atmospheric N deposition. Environ. Sci. Technol. 47, 12193–12200 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Sabo, R. D. et al. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition. Atmos. Environ. 146, 271–279 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Lucas, R. W. et al. Long‐term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecol. Appl. 26, 545–556 (2016).

    Article  PubMed  Google Scholar 

  21. 21.

    Bernal, S., Hedin, L. O., Likens, G. E., Gerber, S. & Buso, D. C. Complex response of the forest nitrogen cycle to climate change. Proc. Natl Acad. Sci. USA 109, 3406–3411 (2012).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Craine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Craine, J.M., Elmore, A.J., Wang, L. et al. Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems. Nat Ecol Evol 3, 1287–1288 (2019). https://doi.org/10.1038/s41559-019-0949-4

Download citation

Further reading