Data do not support large-scale oligotrophication of terrestrial ecosystems

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  PubMed  Google Scholar 

  2. 2.

    Ghimire, B. et al. A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecol. Appl. 27, 1421–1434 (2017).

    Article  PubMed  Google Scholar 

  3. 3.

    Sharwood, R. E., Crous, K. Y., Whitney, S. M., Ellsworth, D. S. & Ghannoum, O. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus. J. Exp. Bot. 68, 1157–1167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cotrufo, M. F., Ineson, P. & Scott, A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Change Biol. 4, 43–54 (1998).

    Article  Google Scholar 

  5. 5.

    Taub, D. R., Miller, B. & Allen, H. Effects of elevated CO2 on the protein concentration of food crops: a meta‐analysis. Glob. Change Biol. 14, 565–575 (2008).

    Article  Google Scholar 

  6. 6.

    Norby, R. J., Cotrufo, M. F., Ineson, P., O’Neill, E. G. & Canadell, J. G. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153–165 (2001).

    Article  PubMed  Google Scholar 

  7. 7.

    Phillips, R. P. et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15, 1042–1049 (2012).

    Article  PubMed  Google Scholar 

  8. 8.

    Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Bader, M. K. F. et al. Central European hardwood trees in a high‐CO2 future: synthesis of an 8‐year forest canopy CO2 enrichment project. J. Ecol. 101, 1509–1519 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free‐air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Schleppi, P., Bucher-Wallin, I., Hagedorn, F. & Körner, C. Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob. Change Biol. 18, 757–768 (2012).

    Article  Google Scholar 

  12. 12.

    Billings, S. A. et al. Alterations of nitrogen dynamics under elevated carbon dioxide in an intact Mojave Desert ecosystem: evidence from nitrogen-15 natural abundance. Oecologia 131, 463–467 (2002).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Polley, H. W. et al. Plant community change mediates the response of foliar δ15N to CO2 enrichment in mesic grasslands. Oecologia 178, 591–601 (2015).

    Article  PubMed  Google Scholar 

  14. 14.

    BassiriRad, H. et al. Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Glob. Change Biol. 9, 1582–1590 (2003).

    Article  Google Scholar 

  15. 15.

    Stock, W. D. & Evans, J. R. Effects of water availability, nitrogen supply and atmospheric CO2 concentrations on plant nitrogen natural abundance values. Funct. Plant Biol. 33, 219–227 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Transboundary Particulate Matter, Photo-oxidants, Acidifying and Eutrophying Components Status Report 1/2018 (EMEP, 2018); https://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf

  18. 18.

    Li, Y. et al. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl Acad. Sci. USA 113, 5874–5879 (2016).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fang, Y. T. et al. Nitrogen deposition and forest nitrogen cycling along an urban–rural transect in southern China. Glob. Change Biol. 17, 872–885 (2011).

    Article  Google Scholar 

  20. 20.

    Felix, J. D., Elliott, E. M., David, A. & Gay, D. A. Spatial and temporal patterns of nitrogen isotopic composition of ammonia at U.S. ammonia monitoring network sites. Atmos. Environ. 150, 434–442 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Krupa, S. V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ. Pollut. 124, 179–221 (2003).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334, 1545–1548 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ren, H. et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356, 749–752 (2017).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erika Hiltbrunner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiltbrunner, E., Körner, C., Meier, R. et al. Data do not support large-scale oligotrophication of terrestrial ecosystems. Nat Ecol Evol 3, 1285–1286 (2019). https://doi.org/10.1038/s41559-019-0948-5

Download citation

Further reading