Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ancient animal genome architecture reflects cell type identities

Abstract

The level of conservation of ancient metazoan gene order (synteny) is remarkable. Despite this, the functionality of the vast majority of such regions in metazoan genomes remains elusive. Utilizing recently published single-cell expression data from several anciently diverging metazoan species, we reveal the level of correspondence between cell types and genomic synteny, identifying genomic regions conferring ancient cell type identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microsynteny detection and co-expression signal enrichment.
Fig. 2: The expression of genes in orthologous microsyntenic clusters helps distinguish ancient cell type relationships.

Similar content being viewed by others

Data availability

Single-cell datasets used in this study are available via gene expression omnibus accessions GSE95723 and GSE111068 and https://shiny.mdc-berlin.de/psca/.

Code availability

The analysis code is available at https://github.com/nijibabulu/metazoan_synteny.

References

  1. Engström, P. G., Ho Sui, S. J., Drivenes, Ø., Becker, T. S. & Lenhard, B. Genome Res. 17, 1898–1908 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Irimia, M. et al. Genome Res. 22, 2356–2367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simakov, O. et al. Nature 493, 526–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Plass, M. et al. Science 360, eaaq1723 (2018).

    Article  PubMed  Google Scholar 

  5. Sebé-Pedrós, A. et al. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sebé-Pedrós, A. et al. Cell 173, 1520–1534.e20 (2018).

    Article  PubMed  Google Scholar 

  7. Emms, D. M. & Kelly, S. Genome Biol. 16, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Nat. Methods 11, 740–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan, A. et al. Nucleic Acids Res. 46, D260–D266 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Ghazanfar, S., Bisogni, A. J., Ormerod, J. T., Lin, D. M. & Yang, J. Y. H. BMC Syst. Biol. 10, 127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kersey, P. J. et al. Nucleic Acids Res. 46, D802–D808 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Ryan, J. F. et al. Science 342, 1242592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srivastava, M. et al. Nature 454, 955–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Putnam, N. H. et al. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Fredman, D., Schwaiger, M., Rentzsch, F. & Technau, U. Nematostella vectensis transcriptome and gene models v2.0. Figshare https://doi.org/10.6084/m9.figshare.807696.v1 (2013).

  16. Brandl, H. et al. Nucleic Acids Res. 44, D764–D773 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, S., Lomsadze, A. & Borodovsky, M. Nucleic Acids Res. 43, e78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lefort, V., Desper, R. & Gascuel, O. Mol. Biol. Evol. 32, 2798–2800 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexander, R. A. Bull. Psychon. Soc. 28, 335–336 (1990).

    Article  Google Scholar 

  20. McLeay, R. C. & Bailey, T. L. BMC Bioinformatics 11, 165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yanai, I. et al. Bioinformatics 21, 650–659 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Computation was done at the Life Science Compute Cluster at the University of Vienna. This work was funded by grants from the Austrian Science Fund to U.T. (P27353) and O.S. (P32190).

Author information

Authors and Affiliations

Authors

Contributions

O.S. and B.Z. designed the analyses. B.Z. performed the synteny and expression analyses. B.Z., O.S. and N.S.M.R. analysed the data. B.Z., U.T. and O.S. wrote the manuscript.

Corresponding author

Correspondence to Oleg Simakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Data 1

Synteny blocks.

Supplementary Data 2

Expression data for 32 shared microsyntenic blocks.

Supplementary Data 3

High-resolution vector images for Supplementary Figs. 3–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, B., Robert, N.S.M., Technau, U. et al. Ancient animal genome architecture reflects cell type identities. Nat Ecol Evol 3, 1289–1293 (2019). https://doi.org/10.1038/s41559-019-0946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0946-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing