Ancient animal genome architecture reflects cell type identities

Abstract

The level of conservation of ancient metazoan gene order (synteny) is remarkable. Despite this, the functionality of the vast majority of such regions in metazoan genomes remains elusive. Utilizing recently published single-cell expression data from several anciently diverging metazoan species, we reveal the level of correspondence between cell types and genomic synteny, identifying genomic regions conferring ancient cell type identity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Microsynteny detection and co-expression signal enrichment.
Fig. 2: The expression of genes in orthologous microsyntenic clusters helps distinguish ancient cell type relationships.

Data availability

Single-cell datasets used in this study are available via gene expression omnibus accessions GSE95723 and GSE111068 and https://shiny.mdc-berlin.de/psca/.

Code availability

The analysis code is available at https://github.com/nijibabulu/metazoan_synteny.

References

  1. 1.

    Engström, P. G., Ho Sui, S. J., Drivenes, Ø., Becker, T. S. & Lenhard, B. Genome Res. 17, 1898–1908 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Irimia, M. et al. Genome Res. 22, 2356–2367 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Simakov, O. et al. Nature 493, 526–531 (2013).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Plass, M. et al. Science 360, eaaq1723 (2018).

    Article  PubMed  Google Scholar 

  5. 5.

    Sebé-Pedrós, A. et al. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sebé-Pedrós, A. et al. Cell 173, 1520–1534.e20 (2018).

    Article  PubMed  Google Scholar 

  7. 7.

    Emms, D. M. & Kelly, S. Genome Biol. 16, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Nat. Methods 11, 740–742 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Khan, A. et al. Nucleic Acids Res. 46, D260–D266 (2018).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ghazanfar, S., Bisogni, A. J., Ormerod, J. T., Lin, D. M. & Yang, J. Y. H. BMC Syst. Biol. 10, 127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kersey, P. J. et al. Nucleic Acids Res. 46, D802–D808 (2018).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ryan, J. F. et al. Science 342, 1242592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Srivastava, M. et al. Nature 454, 955–960 (2008).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Putnam, N. H. et al. Science 317, 86–94 (2007).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Fredman, D., Schwaiger, M., Rentzsch, F. & Technau, U. Nematostella vectensis transcriptome and gene models v2.0. Figshare https://doi.org/10.6084/m9.figshare.807696.v1 (2013).

  16. 16.

    Brandl, H. et al. Nucleic Acids Res. 44, D764–D773 (2016).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Tang, S., Lomsadze, A. & Borodovsky, M. Nucleic Acids Res. 43, e78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lefort, V., Desper, R. & Gascuel, O. Mol. Biol. Evol. 32, 2798–2800 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Alexander, R. A. Bull. Psychon. Soc. 28, 335–336 (1990).

    Article  Google Scholar 

  20. 20.

    McLeay, R. C. & Bailey, T. L. BMC Bioinformatics 11, 165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yanai, I. et al. Bioinformatics 21, 650–659 (2005).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Computation was done at the Life Science Compute Cluster at the University of Vienna. This work was funded by grants from the Austrian Science Fund to U.T. (P27353) and O.S. (P32190).

Author information

Affiliations

Authors

Contributions

O.S. and B.Z. designed the analyses. B.Z. performed the synteny and expression analyses. B.Z., O.S. and N.S.M.R. analysed the data. B.Z., U.T. and O.S. wrote the manuscript.

Corresponding author

Correspondence to Oleg Simakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Data 1

Synteny blocks.

Supplementary Data 2

Expression data for 32 shared microsyntenic blocks.

Supplementary Data 3

High-resolution vector images for Supplementary Figs. 3–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, B., Robert, N.S.M., Technau, U. et al. Ancient animal genome architecture reflects cell type identities. Nat Ecol Evol 3, 1289–1293 (2019). https://doi.org/10.1038/s41559-019-0946-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing