Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of diverse life cycles and life histories at the origin of multicellularity

Abstract

The evolution of multicellularity has given rise to a remarkable diversity of multicellular life cycles and life histories. Whereas some multicellular organisms are long-lived, grow through cell division, and repeatedly release single-celled propagules (for example, animals), others are short-lived, form by aggregation, and propagate only once, by generating large numbers of solitary cells (for example, cellular slime moulds). There are no systematic studies that explore how diverse multicellular life cycles can come about. Here, we focus on the origin of multicellularity and develop a mechanistic model to examine the primitive life cycles that emerge from a unicellular ancestor when an ancestral gene is co-opted for cell adhesion. Diverse life cycles readily emerge, depending on ecological conditions, group-forming mechanism, and ancestral constraints. Among these life cycles, we recapitulate both extremes of long-lived groups that propagate continuously and short-lived groups that propagate only once, with the latter type of life cycle being particularly favoured when groups can form by aggregation. Our results show how diverse life cycles and life histories can easily emerge at the origin of multicellularity, shaped by ancestral constraints and ecological conditions. Beyond multicellularity, this finding has similar implications for other major transitions, such as the evolution of sociality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the model.
Fig. 2: Emergence of diverse multicellular life cycles.
Fig. 3: Topologies of evolved gene regulatory networks.
Fig. 4: Emergent multicellular life cycles differ in their life history strategies.
Fig. 5: Coming together facilitates the evolution of novel life cycles.

Similar content being viewed by others

Data availability

The study is theoretical; no new empirical data were generated.

Code availability

The simulation code supporting this work is available for download from https://doi.org/10.5281/zenodo.2845406. Pseudocode is available in the Supplementary Methods.

References

  1. Buss, L. W. The Evolution of Individuality (Princeton Univ. Press, 1987).

  2. van Gestel, J. & Tarnita, C. E. On the origin of biological construction, with a focus on multicellularity. Proc. Natl Acad. Sci. USA 114, 11018–11026 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1997).

  4. West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Szathmáry, E. Toward major evolutionary transitions theory 2.0. Proc. Natl Acad. Sci. USA 112, 10104–10111 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).

    Google Scholar 

  7. De Monte, S. & Rainey, P. B. Nascent multicellular life and the emergence of individuality. J. Biosci. 39, 237–248 (2014).

    PubMed  Google Scholar 

  8. Rainey, P. B. & De Monte, S. Resolving conflicts during the evolutionary transition to multicellular life. Annu. Rev. Ecol. Evol. Syst. 45, 599–620 (2014).

    Google Scholar 

  9. Bonner, J. T. The origins of multicellularity. Integr. Biol. 1, 27–36 (1998).

    Google Scholar 

  10. Bonner, J. T. Size and Cycle: An Essay on the Structure of Biology (Princeton Univ. Press, 1965).

  11. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G. P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  12. Coelho, S. M. et al. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406, 152–170 (2007).

    CAS  PubMed  Google Scholar 

  13. Herron, M. D., Rashidi, A., Shelton, D. E. & Driscoll, W. W. Cellular differentiation and individuality in the ‘minor’ multicellular taxa. Biol. Rev. 88, 844–861 (2013).

    PubMed  Google Scholar 

  14. Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Griesemer, J. Reproduction in complex life cycles: toward a developmental reaction norms perspective. Philos. Sci. 83, 803–815 (2016).

    Google Scholar 

  16. Libby, E. & Rainey, P. B. A conceptual framework for the evolutionary origins of multicellularity. Phys. Biol. 10, 035001 (2013).

    PubMed  Google Scholar 

  17. Nanjundiah, V., Kirk, D. & Ruiz-Trillo, I. in Cells in Evolutionary Biology (eds. Hall, B. K. & Moody, S. A.) Ch. 4 (CRC Press, 2018).

  18. Bonner, J. T. Life Cycles: Reflections of an Evolutionary Biologist (Princeton Univ. Press, 1993).

  19. Tarnita, C. E., Taubes, C. H. & Nowak, M. A. Evolutionary construction by staying together and coming together. J. Theor. Biol. 320, 10–22 (2013).

    PubMed  Google Scholar 

  20. Bonner, J. T. Cells and Societies (Princeton Univ. Press, 1955).

  21. Pichugin, Y., Peña, J., Rainey, P. B. & Traulsen, A. Fragmentation modes and the evolution of life cycles. PLoS Comp. Biol. 13, e1005860 (2017).

    Google Scholar 

  22. Roze, D. & Michod, R. E. Mutation, multilevel selection, and the evolution of propagule size during the origin of multicellularity. Am. Nat. 158, 638–654 (2001).

    CAS  PubMed  Google Scholar 

  23. Grosberg, R. K. & Strathmann, R. R. One cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life histories. Trends Ecol. Evol. 13, 112–116 (1998).

    CAS  PubMed  Google Scholar 

  24. King, N. The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004).

    CAS  PubMed  Google Scholar 

  25. Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

    PubMed  Google Scholar 

  26. Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Suga, H. & Ruiz-Trillo, I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev. Biol. 377, 284–292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebé-Pedrós, A. et al. Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2, e01287 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Sogabe, S. et al. Pluripotency and the origin of animal multicellularity. Nature https://doi.org/10.1038/s41586-019-1290-4 (2019).

    CAS  PubMed  Google Scholar 

  30. Hammerschmidt, K., Rose, C. J., Kerr, B. & Rainey, P. B. Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515, 75–79 (2014).

    CAS  PubMed  Google Scholar 

  31. Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4, 2742 (2013).

    PubMed  Google Scholar 

  33. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).

    CAS  PubMed  Google Scholar 

  34. Herron, M. D. et al. De novo origins of multicellularity in response to predation. Sci. Rep. 9, 2328 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Hanschen, E. R. et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat. Commun. 7, 11370 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. King, N., Hittinger, C. T. & Carroll, S. B. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361–363 (2003).

    CAS  PubMed  Google Scholar 

  37. Rokas, A. The molecular origins of multicellular transitions. Curr. Opin. Genet. Dev. 18, 472–478 (2008).

    CAS  PubMed  Google Scholar 

  38. Sebé-Pedrós, A. et al. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Rossetti, V., Filippini, M., Svercel, M., Barbour, A. D. & Bagheri, H. C. Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics. J. R. Soc. Interface 8, 1772–1784 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Furusawa, C. & Kaneko, K. Origin of multicellular organisms as an inevitable consequence of dynamical systems. Anat. Rec. 268, 327–342 (2002).

    PubMed  Google Scholar 

  41. van Gestel, J. & Nowak, M. A. Phenotypic heterogeneity and the evolution of bacterial life cycles. PLoS Comp. Biol. 12, e1004764 (2016).

    Google Scholar 

  42. Pichugin, Y. & Traulsen, A. Reproduction costs can drive the evolution of groups. Preprint at bioRxiv https://doi.org/10.1101/325670 (2018).

  43. Rashidi, A., Shelton, D. E. & Michod, R. E. A Darwinian approach to the origin of life cycles with group properties. Theor. Popul. Biol. 102, 76–84 (2015).

    PubMed  Google Scholar 

  44. Gao, Y., Traulsen, A. & Pichugin, Y. Interacting cells driving the evolution of multicellular life cycles. PLoS Comp. Biol. 15, e1006987 (2019).

    CAS  Google Scholar 

  45. Ratcliff, W. C., Herron, M., Conlin, P. L. & Libby, E. Nascent life cycles and the emergence of higher-level individuality. Philos. Trans. R. Soc. B 372, 20160420 (2017).

    Google Scholar 

  46. Willensdorfer, M. On the evolution of differentiated multicellularity. Evolution 63, 306–323 (2009).

    PubMed  Google Scholar 

  47. Gavrilets, S. Rapid transition towards the division of labor via evolution of developmental plasticity. PLoS Comp. Biol. 6, e1000805 (2010).

    Google Scholar 

  48. Ispolatov, I., Ackermann, M. & Doebeli, M. Division of labour and the evolution of multicellularity. Proc. R. Soc. B. 279, 1768–1776 (2012).

    PubMed  Google Scholar 

  49. Garcia, T., Brunnet, L. G. & De Monte, S. Differential adhesion between moving particles as a mechanism for the evolution of social groups. PLoS Comp. Biol. 10, e1003482 (2014).

    Google Scholar 

  50. Garcia, T., Doulcier, G. & De Monte, S. The evolution of adhesiveness as a social adaptation. eLife 4, e08595 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Kauffman, S. A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969).

    CAS  PubMed  Google Scholar 

  52. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks In Development And Evolution (Academic Press, 2006).

  53. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    CAS  PubMed  Google Scholar 

  54. Smith, S. J., Rebeiz, M. & Davidson, L. From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution. Curr. Opin. Genet. Dev. 51, 103–110 (2018).

    CAS  PubMed  Google Scholar 

  55. Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    CAS  PubMed  Google Scholar 

  56. Piatigorsky, J. Gene Sharing and Evolution: The Diversity of Protein Functions (Harvard Univ. Press, 2009).

  57. Piatigorsky, J. et al. Gene sharing by delta-crystallin and argininosuccinate lyase. Proc. Natl Acad. Sci. USA 85, 3479–3483 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nedelcu, A. M. & Michod, R. E. The evolutionary origin of an altruistic gene. Mol. Biol. Evol. 23, 1460–1464 (2006).

    CAS  PubMed  Google Scholar 

  59. Ritchie, A. V., van Es, S., Fouquet, C. & Schaap, P. From drought sensing to developmental control: evolution of cyclic AMP signaling in social amoebas. Mol. Biol. Evol. 25, 2109–2118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Abedin, M. & King, N. Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 20, 734–742 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Abedin, M. & King, N. The premetazoan ancestry of cadherins. Science 319, 946–948 (2008).

    CAS  PubMed  Google Scholar 

  62. Boraas, M. E., Seale, D. B. & Boxhorn, J. E. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12, 153–164 (1998).

    Google Scholar 

  63. Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pianka, E. R. On r- and K-selection. Am. Nat. 104, 592–597 (1970).

    Google Scholar 

  65. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  66. Avilés, L., Fletcher, J. A., Cutter, A. D. & Perrin, A. E. N. The kin composition of social groups: trading group size for degree of altruism. Am. Nat. 164, 132–144 (2004).

    PubMed  Google Scholar 

  67. Pentz, J. T., Márquez-Zacarías, P., Yunker, P. J., Libby, E. & Ratcliff, W. C. Ecological advantages and evolutionary limitations of aggregative multicellular development. Preprint at bioRxiv https://doi.org/10.1101/255307 (2018).

  68. Libby, E. et al. Geometry shapes evolution of early multicellularity. PLoS Computat. Biol. 10, e1003803 (2014).

    Google Scholar 

  69. Joshi, J., Couzin, I. D., Levin, S. A. & Guttal, V. Mobility can promote the evolution of cooperation via emergent self-assortment dynamics. PLoS Comp. Biol. 13, e1005732 (2017).

    Google Scholar 

  70. Libby, E. & Rainey, P. B. Eco-evolutionary feedback and the tuning of proto-developmental life cycles. PLoS ONE 8, e82274 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Niklas, K. J. The evolutionary-developmental origins of multicellularity. Am. J. Bot. 101, 6–25 (2014).

    CAS  PubMed  Google Scholar 

  72. Minelli, A. & Fusco, G. Developmental plasticity and the evolution of animal complex life cycles. Philos. Trans. R. Soc. B 365, 631–640 (2010).

    Google Scholar 

  73. Wolpert, L. & Szathmáry, E. Multicellularity: evolution and the egg. Nature 420, 745 (2002).

    CAS  PubMed  Google Scholar 

  74. Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl Acad. Sci. USA 104, 8613–8618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998).

    CAS  PubMed  Google Scholar 

  76. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    CAS  Google Scholar 

  77. Schaap, P. Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development 138, 387–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Google Scholar 

  79. Brown, M. W., Kolisko, M., Silberman, J. D. & Roger, A. J. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr. Biol. 22, 1123–1127 (2012).

    CAS  PubMed  Google Scholar 

  80. Queller, D. C. & Strassmann, J. E. Beyond society: the evolution of organismality. Philos. Trans. R. Soc. B 364, 3143–3155 (2009).

    Google Scholar 

  81. Gadagkar, R. & Bonner, J. Social insects and social amoebae. J. Biosci. 19, 219–245 (1994).

    Google Scholar 

  82. Quiñones, A. E. & Pen, I. A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality. Nat. Commun. 8, 15920 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Wilson, E. O. The Insect Societies (Belknap Press of Harvard Univ. Press, 1971).

  84. Riehl, C. Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B 280, 20132245 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Cockburn, A. Evolution of helping behavior in cooperatively breeding birds. Annu. Rev. Ecol. Syst. 29, 141–177 (1998).

    Google Scholar 

  86. Sherman, P. W., Lacey, E. A., Reeve, H. K. & Keller, L. Forum: The eusociality continuum. Behav. Ecol. 6, 102–108 (1995).

    Google Scholar 

  87. Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).

    Google Scholar 

  88. Bourke, A. F. G., Franks, N. R. & Franks, N. R. Social Evolution in Ants (Princeton Univ. Press, 1995).

  89. Gordon, D. M. Ant Encounters: Interaction Networks and Colony Behavior (Princeton Univ. Press, 2010).

  90. Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927).

    Google Scholar 

Download references

Acknowledgements

We dedicate this study to the memory of John Tyler Bonner, whose work has been a source of great inspiration. We thank S. De Monte for comments and discussions and the Theoretical Biology & Bioinformatics group at Utrecht University for computing resources. J.v.G. received support from the EMBO Long-Term Fellowship (no. ALTF 1101-2016) and the Marie Sklodowska-Curie Individual Fellowship (no. 742235). C.E.T. acknowledges support from the US National Science Foundation (no. RoL:FELS:EAGER#1838331).

Author information

Authors and Affiliations

Authors

Contributions

J.v.G. and C.E.T. conceived the study. All authors developed the model. M.S. performed the computational work and analysed the data. All authors interpreted the results and wrote the manuscript.

Corresponding authors

Correspondence to Jordi van Gestel or Corina E. Tarnita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Analyses and Supplementary Figures 1–9.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staps, M., van Gestel, J. & Tarnita, C.E. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat Ecol Evol 3, 1197–1205 (2019). https://doi.org/10.1038/s41559-019-0940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0940-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing