Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction


Animals exhibit an extraordinary diversity of life history strategies. These realized combinations of survival, development and reproduction are predicted to be constrained by physiological limitations and by trade-offs in resource allocation. However, our understanding of these patterns is restricted to a few taxonomic groups. Using demographic data from 121 species, ranging from humans to sponges, we test whether such trade-offs universally shape animal life history strategies. We show that, after accounting for body mass and phylogenetic relatedness, 71% of the variation in animal life history strategies can be explained by life history traits associated with the fast–slow continuum (pace of life) and with a second axis defined by the distribution of age-specific mortality hazards and the spread of reproduction. While we found that life history strategies are associated with metabolic rate and ecological modes of life, surprisingly similar life history strategies can be found across the phylogenetic and physiological diversity of animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Life history traits used in our analysis to describe the life history strategies of a given animal population.
Fig. 2: Variation in life history traits across 121 species of vertebrate and invertebrate animals.
Fig. 3: Principal component analysis and the influence of mode of life and metabolic rate on the position of populations along the first principal component axis (PC1).
Fig. 4: Posterior distributions, modes and 95% CI for the effect of log10 body mass on the log10 of each of the life history traits, variance at the population and phylogenetic scales and the principal component loadings of phylogeny- and body mass-corrected life history traits.

Data availability

All demography data are available from the COMADRE database ( Additional data are available in Supplementary Data.

Code availability

The code used to generate the analysis can be accessed on Github:


  1. 1.

    Vrtílek, M., Žák, J., Pšenička, M. & Reichard, M. Extremely rapid maturation of a wild African annual fish. Curr. Biol. 28, R822–R824 (2018).

    Article  Google Scholar 

  2. 2.

    Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Stearns, S. C. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Stearns, S. C. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41, 173–187 (1983).

    Article  Google Scholar 

  5. 5.

    De Magalhaes, J. & Costa, J. A database of vertebrate longevity records and their relation to other life‐history traits. J. Evol. Biol. 22, 1770–1774 (2009).

    Article  Google Scholar 

  6. 6.

    Brusca, R., Moore, W. & Shuster, S. Invertebrates 3rd edn (Sinauer Associates, 2016).

  7. 7.

    Gross, M. R. Disruptive selection for alternative life histories in salmon. Nature 313, 47 (1985).

    Article  Google Scholar 

  8. 8.

    Hughes, P. W. Between semelparity and iteroparity: empirical evidence for a continuum of modes of parity. Ecol. Evol. 7, 8232–8261 (2017).

    Article  Google Scholar 

  9. 9.

    Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 18, 1099–1107 (2015).

    Article  Google Scholar 

  10. 10.

    Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Law, R. Optimal life histories under age-specific predation. Am. Nat. 114, 399–417 (1979).

    Article  Google Scholar 

  12. 12.

    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992)

  13. 13.

    Bielby, J. et al. The fast–slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    Article  Google Scholar 

  15. 15.

    Bauwens, D. & Diaz-Uriarte, R. Covariation of life-history traits in lacertid lizards: a comparative study. Am. Nat. 149, 91–111 (1997).

    Article  Google Scholar 

  16. 16.

    Paniw, M., Ozgul, A. & Salguero-Gómez Interactive life-history traits predict sensitivity of plants and animals to temporal autocorrelation. Ecol. Lett. 21, 275–286 (2017).

    Article  Google Scholar 

  17. 17.

    Bischof, R. et al. Regulated hunting re-shapes the life history of brown bears. Nat. Ecol. Evol. 2, 116 (2018).

    Article  Google Scholar 

  18. 18.

    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).

    Article  Google Scholar 

  19. 19.

    Gaillard, J.-M. et al. An analysis of demographic tactics in birds and mammals. Oikos 56, 59–76 (1989).

    Article  Google Scholar 

  20. 20.

    Salguero‐Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).

    Article  Google Scholar 

  21. 21.

    Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).

    Article  Google Scholar 

  22. 22.

    Oli, M. K. The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl. Ecol. 5, 449–463 (2004).

    Article  Google Scholar 

  23. 23.

    Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–297 (2007).

    Article  Google Scholar 

  24. 24.

    Read, A. F. & Harvey, P. H. Life history differences among the eutherian radiations. J. Zool. 219, 329–353 (1989).

    Article  Google Scholar 

  25. 25.

    Ricklefs, R. E. Life-history connections to rates of aging in terrestrial vertebrates. Proc. Natl Acad. Sci. USA 107, 10314–10319 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Brown, J. H., Hall, C. A. S. & Sibly, R. M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262–268 (2018).

    Article  Google Scholar 

  27. 27.

    Colchero, F. et al. The emergence of longevous populations. Proc. Natl Acad. Sci. USA 113, E7681–E7690 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Wrycza, T. F., Missov, T. I. & Baudisch, A. Quantifying the shape of aging. PLoS ONE 10, e0119163 (2015).

    Article  Google Scholar 

  29. 29.

    Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).

    CAS  Article  Google Scholar 

  30. 30.

    Charnov, E. L. & Schaffer, W. M. Life-history consequences of natural selection: Cole’s result revisited. Am. Nat. 107, 791–793 (1973).

    Article  Google Scholar 

  31. 31.

    Martin, J. G. & Festa‐Bianchet, M. Age‐independent and age‐dependent decreases in reproduction of females. Ecol. Lett. 14, 576–581 (2011).

    Article  Google Scholar 

  32. 32.

    Huber, S. & Fieder, M. Evidence for a maximum ‘shelf-life’ of oocytes in mammals suggests that human menopause may be an implication of meiotic arrest. Sci. Rep. 8, 14099 (2018).

    Article  Google Scholar 

  33. 33.

    Lahdenperä, M., Mar, K. U. & Lummaa, V. Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans. Front. Zool. 11, 54 (2014).

    Article  Google Scholar 

  34. 34.

    Congdon, J. D. et al. Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta). Exp. Gerontol. 38, 765–772 (2003).

    Article  Google Scholar 

  35. 35.

    Congdon, J., Nagle, R., Kinney, O. & van Loben Sels, R. Hypotheses of aging in a long-lived vertebrate, Blanding’s turtle (Emydoidea blandingii). Exp. Gerontol. 36, 813–827 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    Vaupel, J. W., Baudisch, A., Dölling, M., Roach, D. A. & Gampe, J. The case for negative senescence. Theor. Popul. Biol. 65, 339–351 (2004).

    Article  Google Scholar 

  37. 37.

    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  39. 39.

    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. B 281, 20140298 (2014).

    Article  Google Scholar 

  40. 40.

    Bjørkvoll, E. et al. Stochastic population dynamics and life-history variation in marine fish species. Am. Nat. 180, 372–387 (2012).

    Article  Google Scholar 

  41. 41.

    Nakayama, S., Rapp, T. & Arlinghaus, R. Fast–slow life history is correlated with individual differences in movements and prey selection in an aquatic predator in the wild. J. Anim. Ecol. 86, 192–201 (2017).

    Article  Google Scholar 

  42. 42.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  43. 43.

    Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).

    CAS  Article  Google Scholar 

  44. 44.

    Burns, J. H. et al. Empirical tests of life-history evolution theory using phylogenetic analysis of plant demography. J. Ecol. 98, 334–344 (2010).

    Article  Google Scholar 

  45. 45.

    Auer, S. K., Dick, C. A., Metcalfe, N. B. & Reznick, D. N. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 14 (2018).

    Article  Google Scholar 

  46. 46.

    Baker, T. R. et al. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 17, 527–536 (2014).

    Article  Google Scholar 

  47. 47.

    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life‐history evolution: does city living lead to slower pace of life? Glob. Change Biol. 24, 1452–1469 (2018).

    Article  Google Scholar 

  48. 48.

    Collett, R. A., Baker, A. M. & Fisher, D. O. Prey productivity and predictability drive different axes of life-history variation in carnivorous marsupials. Proc. R. Soc. Lond. B 285, (2018).

    Article  Google Scholar 

  49. 49.

    Allen, W. L., Street, S. E. & Capellini, I. Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett. 20, 222–230 (2017).

    Article  Google Scholar 

  50. 50.

    Salguero-Gómez, R. Implications of clonality for ageing research. Evol. Ecol. 32, 9–28 (2018).

    Article  Google Scholar 

  51. 51.

    Stott, I., Hodgson, D. J. & Townley, S. popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3, 797–802 (2012).

    Article  Google Scholar 

  52. 52.

    Keyfitz, K. & Flieger, W. World Population: An Analysis of Vital Data (Univ. of Chicago Press, 1968).

  53. 53.

    Keyfitz, N. & Flieger, W. Population: Facts and Methods of Demography (W. H. Freeman, 1971).

  54. 54.

    Keyfitz, N. & Flieger, W. World Population Growth and Aging: Demographic Trends in the Late Twentieth Century (Univ. of Chicago Press, 1990).

  55. 55.

    Myhrvold, N. P. et al. An amniote life‐history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).

    Article  Google Scholar 

  56. 56.

    Froese, R. & Pauly, D. (eds) FishBase (World wide web electronic publication, accessed 13 June 2016);

  57. 57.

    White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).

    CAS  Article  Google Scholar 

  58. 58.

    White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127 (2006).

    Article  Google Scholar 

  59. 59.

    McNab, B. K. Ecological factors affect the level and scaling of avian BMR. Comp. Biochem. Physiol. A 152, 22–45 (2009).

    Article  Google Scholar 

  60. 60.

    Killen, S. S. et al. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187, 592–606 (2016).

    Article  Google Scholar 

  61. 61.

    Genoud, M., Isler, K. & Martin, R. D. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol. Rev. 93, 404–438 (2018).

    Article  Google Scholar 

  62. 62.

    Ultsch, G. R. Metabolic scaling in turtles. Comp. Biochem. Physiol. A 164, 590–597 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    Fristoe, T. S. et al. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc. Natl Acad. Sci. USA 112, 15934–15939 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    The IUCN Red List of Threatened Species (IUCN, 2019);

  65. 65.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  67. 67.

    Guillerme, T. & Healy, K. mulTree: A Package for Running MCMCglmm Analysis on Multiple Trees (Zenodo, 2014);

  68. 68.

    Healy, K. Eusociality but not fossoriality drives longevity in small mammals. Proc. R. Soc. Lond. B 282, 20142917 (2015).

    Article  Google Scholar 

  69. 69.

    Salguero-Gomez, R. & Plotkin, J. B. Matrix dimensions bias demographic inferences: implications for comparative plant demography. Am. Nat. 176, 710–722 (2010).

    Article  Google Scholar 

  70. 70.

    Dinno, A. paran: Horn’s Test of Principal Components/Factors R package v.1.5.2 (CRAN, 2012);

  71. 71.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    Article  Google Scholar 

Download references


This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI grant no. 15/ERCD/2803 to Y.M.B.), the Natural Environment Research Council (grant no. NE/M018458/1 to R.S.-G.) and the Australian Research Council (grant no. DE140100505 to R.S.-G.). O.R.J. is supported by the Danish Council for Independent Research (grant no. 6108-00467B). We thank the Laboratory of Evolutionary Biodemography at the Max Planck Institute for Demographic Research for support, development and curation of the COMADRE Animal Matrix Database.

Author information




K.H. designed and conducted the analysis, collated body size, mode of life, metabolic rate and phylogenetic data and wrote the manuscript. T.H.G.E contributed additional human demography data. O.R.J. provided additional code used in the analysis. Y.M.B. and R.S.-G. designed the research. All authors contributed to analysis, design, discussion and interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Kevin Healy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–3, and Supplementary Tables 1–5

Reporting Summary

Supplementary Data 1

Species from the COMADRE Animal Matrix Database that meet the selection criteria and corresponding data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Healy, K., Ezard, T.H.G., Jones, O.R. et al. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat Ecol Evol 3, 1217–1224 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing