Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change and cultural resilience in late pre-Columbian Amazonia


The long-term response of ancient societies to climate change has been a matter of global debate. Until recently, the lack of integrative studies using archaeological, palaeoecological and palaeoclimatological data prevented an evaluation of the relationship between climate change, distinct subsistence strategies and cultural transformations across the largest rainforest of the world, Amazonia. Here we review the most relevant cultural changes seen in the archaeological record of six different regions within Greater Amazonia during late pre-Columbian times. We compare the chronology of those cultural transitions with high-resolution regional palaeoclimate proxies, showing that, while some societies faced major reorganization during periods of climate change, others were unaffected and even flourished. We propose that societies with intensive, specialized land-use systems were vulnerable to transient climate change. In contrast, land-use systems that relied primarily on polyculture agroforestry, resulting in the formation of enriched forests and fertile Amazonian dark earth in the long term, were more resilient to climate change.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Regions, archaeological sites94,128,129 and palaeoclimate records discussed in the text.
Fig. 2: Palaeoclimate records discussed in the text (see location in Fig. 1).
Fig. 3: Periods of cultural change and palaeoclimate records for six regions of Greater Amazonia, and regional charcoal curves from the best-sampled regions (Supplementary Methods).
Fig. 4: Two models of land use in late pre-Columbian Amazonia. (right panel palms).


  1. 1.

    Dobyns, H. F. An appraisal of techniques with a new hemispheric estimate. Curr. Anthropol. 7, 395–416 (1966).

    Google Scholar 

  2. 2.

    Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

    Google Scholar 

  3. 3.

    Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. Lond. B 282, 20150813 (2015).

    Google Scholar 

  4. 4.

    Denevan, W. M. Estimating Amazonian Indian Numbers in 1492. J. Lat. Am. Geogr. 13, 207–221 (2014).

    Google Scholar 

  5. 5.

    Polyak, V. J. & Asmerom, Y. Late Holocene climate and cultural changes in the southwestern United States. Science 294, 148–151 (2001).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).

    CAS  PubMed  Google Scholar 

  7. 7.

    Douglas, P. M. J., Demarest, A. A., Brenner, M. & Canuto, M. A. Impacts of climate change on the collapse of lowland Maya civilization. Annu. Rev. Earth Planet. Sci. 44, 613–645 (2016).

    CAS  Google Scholar 

  8. 8.

    Ortloff, C. R. & Kolata, A. L. Climate and collapse: agro-ecological perspectives on the decline of the Tiwanaku state. J. Archaeol. Sci. 20, 195–221 (1993).

    Google Scholar 

  9. 9.

    Binford, M. W. et al. Climate variation and the rise and fall of an Andean civilization. Quat. Res. 47, 235–248 (1997).

    Google Scholar 

  10. 10.

    Kirch, P. V. Microcosmic histories: island perspectives on “global” change. Am. Anthropol. 99, 30–42 (1997).

    Google Scholar 

  11. 11.

    Allen, M. S. Bet-hedging strategies, agricultural change, and unpredictable environments: historical development of dryland agriculture in Kona, Hawaii. J. Anthropol. Archaeol. 23, 196–224 (2004).

    Google Scholar 

  12. 12.

    Gunderson, L. H. & Holling, C. S. Panarchy: Understanding Transformations in Human and Natural Systems (Island Press, 2002).

  13. 13.

    Holling, C.S. in Sustainable Development of the Biosphere (eds Clark, W. C. & Munn, R. E.) 292–317 (Cambridge University Press, 1986).

  14. 14.

    Holling, C. S. Understanding the complexity of economic, ecological, and social systems. Ecosyst. (N. Y.) 4, 390–405 (2001).

    Google Scholar 

  15. 15.

    Rostain, S. Islands in the Rainforest: Landscape Management in Pre-Columbian Amazonia (Left Coast, 2013).

  16. 16.

    Versteeg, A.H. in Handbook of South American Archaeology (eds. Silverman, H. & Isbell, W. H.) 303–318 (Springer, 2008).

  17. 17.

    Iriarte, J. et al. Late Holocene Neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs. J. Archaeol. Sci. 37, 2984–2994 (2010).

    Google Scholar 

  18. 18.

    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).

    CAS  PubMed  Google Scholar 

  19. 19.

    Van den Bel, M. in Arqueologia Amazônica (eds E. Pereira & V. Guapindaia) 61–93 (Museu Paraense Emilio Goeldi, 2010).

  20. 20.

    Roosevelt, A.C. Moundbuilders of the Amazon: Geophysical Archaeology on Marajo Island, Brazil (Academic Press, 1991).

  21. 21.

    Schaan, D.P. The Camutins Chiefdom: Rise and Development of Social Complexity on Marajó Island, Brazilian Amazon (University of Pittsburgh, 2004).

  22. 22.

    Schaan, D.P. Sacred Geographies of Ancient Amazonia: Historical Ecology of Social Complexity (Left Coast Press, 2011).

  23. 23.

    Roosevelt, A.C. in Complex Polities in the Ancient Tropical World (eds Elisabeth A. Bacus & Lisa J. Lucero) 13–33 (Archaeological Papers of the American Anthropological Association, 1999).

  24. 24.

    Nimuendajú, C. Os Tapajó. Bol. Mus. Para. Emilio Goeldi 10, 93–106 (1948).

    Google Scholar 

  25. 25.

    Gomes, D. M. C. The diversity of social forms in pre-colonial Amazonia. Revista de Arqueología Americana 25, 189–225 (2007).

    Google Scholar 

  26. 26.

    Schaan, D.P. in Beyond Waters: Archaeology and Environmental History of the Amazonian Inland (ed. Stenborg, P. D.) 23–36 (University of Gothenburg, 2016).

  27. 27.

    Gomes, D. M. C. Politics and ritual in large villages in Santarém, lower Amazon, Brazil. Camb. Archaeol. J. 27, 275–293 (2016).

    Google Scholar 

  28. 28.

    Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Neves, E.G. in Human–Environment Interactions: Current and Future Directions (eds Brondízio, E. S. & Moran, E. F.) 371–388 (Springer Netherlands, 2013).

  30. 30.

    Neves, E.G. & Petersen, J.B. in Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (eds Balée, W. & Erickson, C. L.) 279–310 (Columbia University Press, 2006).

  31. 31.

    Heckenberger, M. J., Petersen, J. B. & Neves, E. G. Village size and permanence in Amazonia: two archaeological examples from Brazil. Lat. Am. Antiq. 10, 353–376 (1999).

    Google Scholar 

  32. 32.

    Bozarth, S.R., Price, K., Woods, W.I., Neves, E.G. & Rebellato, R. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 85–98 (Springer Netherlands, 2009).

  33. 33.

    Neves, E. in Ethnicity in Ancient Amazonia: Reconstructing Past Identities from Archaeology, Linguistics, and Ethnohistory (eds Hornborg, A. & Hill, J. D.) 31–56 (University of Colorado Press, 2011).

  34. 34.

    Moraes, C. P. & Neves, E. G. O ano 1000: adensamento populacional, interação e conflito na Amazônia Central. Amazônica a 4, 122–148 (2012).

    Google Scholar 

  35. 35.

    Pärssinen, M., Schaan, D. P. & Ranzi, A. Pre-Columbian geometric earthworks in the upper Purús: a complex society in western Amazonia. Antiquity 83, 1084–1095 (2009).

    Google Scholar 

  36. 36.

    Saunaluoma, S. & Schaan, D. Monumentality in Western Amazonian formative societies: geometric ditched enclosures in the Brazilian state of Acre. Antiqua 2, 1 (2012).

    Google Scholar 

  37. 37.

    Schaan, D. et al. New radiometric dates for precolumbian (2000–700 B.P.) earthworks in western Amazonia, Brazil. J. Field Archaeol. 37, 132–142 (2012).

    Google Scholar 

  38. 38.

    Watling, J. et al. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proc. Natl Acad. Sci. USA 114, 1868–1873 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Neves, E. G. et al. Pesquisa e Formação nos Sítios Arqueológicos Espinhara e Sol de Campinas do Acre - PESC (University of São Paulo, São Paulo, 2016).

    Google Scholar 

  40. 40.

    Lombardo, U. & Prümers, H. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 1875–1885 (2010).

    Google Scholar 

  41. 41.

    Lombardo, U., Denier, S., May, J.-H., Rodrigues, L. & Veit, H. Human–environment interactions in pre-Columbian Amazonia: The case of the Llanos de Moxos, Bolivia. Quat. Int. 312, 109–119 (2013).

    Google Scholar 

  42. 42.

    Lombardo, U., Denier, S. & Veit, H. Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon. SOIL 1, 65–81 (2015).

    CAS  Google Scholar 

  43. 43.

    Prümers, H. ¿”Charlatanocracia” en Mojos? investigaciones arqueológicas en la Loma Salvatierra, Beni, Bolivia. Bol. Arqueol. PUCP 11, 103–116 (2007).

    Google Scholar 

  44. 44.

    Prümers, H. & Jaimes Betancourt, C. 100 años de investigación arqueológica en los Llanos de Mojos. Arqueoantropológicas 4, 11–54 (2014).

    Google Scholar 

  45. 45.

    Whitney, B. S., Dickau, R., Mayle, F. E., Soto, J. D. & Iriarte, J. Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia. Quat. Res. 80, 207–217 (2013).

    Google Scholar 

  46. 46.

    Dickau, R. et al. Diversity of cultivars and other plant resources used at habitation sites in the Llanos de Mojos, Beni, Bolivia: evidence from macrobotanical remains, starch grains, and phytoliths. J. Archaeol. Sci. 39, 357–370 (2012).

    Google Scholar 

  47. 47.

    Prümers, H., Jaimes Betancourt, C. & Plaza Martinez, R. Algunas tumbas prehispanicas de Bella Vista, Prov. Iténez, Bolivia. Z. f.ür. Arch.äologie Außereuropäischer Kult. 1, 251–284 (2006).

    Google Scholar 

  48. 48.

    Carson, J. F. et al. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc. Natl Acad. Sci. USA 111, 10497–10502 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Prümers, H. in Amazonía: Memorias de las Conferencias Magistrales del 3er Encuentro Internacional de Arqueología Amazónica (ed Rostain, S.) 73–89 (Ekseption Publicidad, 2014).

  50. 50.

    Erickson, C.L. in Arqueología de las Tierras Bajas (eds Coirolo, A. D. & Boksar, R. B.) 207–226 (Comisión Nacional de Arqueología, 2000).

  51. 51.

    Heckenberger, M. J. et al. Amazonia 1492: pristine forest or cultural parkland? Science 301, 1710–1714 (2003).

    CAS  PubMed  Google Scholar 

  52. 52.

    Heckenberger, M.J. The Ecology of Power: Culture, Place, and Personhood in the Southern Amazon, A.D. 1000–2000 (Routledge, 2005).

  53. 53.

    Heckenberger, M. J. et al. Pre-Columbian Urbanism, Anthropogenic Landscapes, and the Future of the Amazon. Science 321, 1214–1217 (2008).

    CAS  PubMed  Google Scholar 

  54. 54.

    Novello, V. F. et al. Two millennia of south Atlantic convergence zone variability reconstructed from isotopic proxies. Geophys. Res. Lett. 45, 5045–5051 (2018).

    Google Scholar 

  55. 55.

    Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Rohl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–1308 (2001).

    CAS  PubMed  Google Scholar 

  56. 56.

    Bird, B. W. et al. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc. Natl Acad. Sci. USA 108, 8583–8588 (2011).

    CAS  PubMed  Google Scholar 

  57. 57.

    Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Novello, V. F. et al. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 6, 24762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Apaéstegui, J. et al. Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ18O) records for the last 1400 years. Earth Planet. Sci. Lett. 494, 124–134 (2018).

    Google Scholar 

  60. 60.

    Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    CAS  PubMed  Google Scholar 

  61. 61.

    Vuille, M. et al. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim 8, 1309 (2012).

    Google Scholar 

  62. 62.

    Hammond, D. S., Steege, Ht & Van Der Borg, K. Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica 39, 153–160 (2007).

    Google Scholar 

  63. 63.

    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    CAS  PubMed  Google Scholar 

  64. 64.

    Schaan, D.P. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 339–357 (Springer New York, 2008).

  65. 65.

    Hermenegildo, T., O’Connell, T. C., Guapindaia, V. L. C. & Neves, E. G. New evidence for subsistence strategies of late pre-colonial societies of the mouth of the Amazon based on carbon and nitrogen isotopic data. Quat. Int. 448, 139–149 (2017).

    Google Scholar 

  66. 66.

    Meggers, B.J. & Evans, C. Archaeological Investigations at the Mouth of the Amazon (Smithsonian Institution, 1957).

  67. 67.

    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).

    PubMed  Google Scholar 

  68. 68.

    Lara, R. J. & Cohen, M. C. L. Palaeolimnological studies and ancient maps confirm secular climate fluctuations in Amazonia. Clim. Change 94, 399–408 (2009).

    CAS  Google Scholar 

  69. 69.

    Almeida, F.O. & Neves, E.G. in Antes de Orellana: Actas del 3er Encuentro Internacional de Arqueología Amazónica (ed. Rostain, S.) 175–182 (Ekseption Publicidad, 2014).

  70. 70.

    Oliveira, E. in Cerâmicas Arqueológicas da Amazônia: Rumo a Uma Nova Síntese (eds Barreto, C., Lima, H. P. & Betancourt, C. J.) 387–396 (IPHAN/Ministério da Cultura, 2012).

  71. 71.

    Novello, V. F. et al. Multidecadal climate variability in Brazil’s Nordeste during the last 3000 years based on speleothem isotope records. Geophys. Res. Lett. 39, L23706 (2012).

    Google Scholar 

  72. 72.

    Schaan, D. P., Pärssinen, M., Ranzi, A. & Piccoli, J. Geoglifos da Amazônia ocidental: Evidência de complexidade social entre povos da terra firme. Rev. de. Arqueol. 20, 67–82 (2007).

    Google Scholar 

  73. 73.

    Saunaluoma, S. Pre-Columbian earthworks in the Riberalta region of the Bolivian Amazon. Amazônica 2, 104–138 (2010).

    Google Scholar 

  74. 74.

    Apaéstegui, J. et al. Hydroclimate variability of the northwestern Amazon basin near the Andean foothills of Peru related to the South American monsoon system during the last 1600 years. Clim 10, 1967–1981 (2014).

    Google Scholar 

  75. 75.

    Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L. & Vuille, M. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quat. Sci. Rev. 75, 1–10 (2013).

    Google Scholar 

  76. 76.

    Erickson, C.L. in Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (eds Balée, W. & Erickson, C. L.) 235–278 (Columbia University Press, 2006).

  77. 77.

    Lombardo, U., May, J.-H. & Veit, H. Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. Holocene 22, 1035–1045 (2012).

    Google Scholar 

  78. 78.

    Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).

    CAS  PubMed  Google Scholar 

  79. 79.

    Maezumi, S. Y., Whitney, B. S., Mayle, F. E., Gregorio de Souza, J. & Iriarte, J. Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quat. Int. 488, 81–94 (2017).

    Google Scholar 

  80. 80.

    Abbott, M. B., Binford, M. W., Brenner, M. & Kelts, K. R. A. 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quat. Res. 47, 169–180 (1997).

    CAS  Google Scholar 

  81. 81.

    Thompson, G., Mosley-Thompson, E., Bolzan, J. F. & Koci, B. R. A. 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru. Science 229, 971–973 (1985).

    CAS  PubMed  Google Scholar 

  82. 82.

    Kolata, A.L. & Ortloff, C.R. in Tiwanaku And Its Hinterland: Archaeology And Paleoecology On An Andean Civilization Smithsonian Series In Archaeological Inquiry 181–201 (Smithsonian Institution Press, 1996).

  83. 83.

    Eder, F.J. Breve Descripción de las Reducciones de Mojos (J. Barnadas, 1985).

  84. 84.

    de Souza, J. G. et al. Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nat. Commun. 9, 1125 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Wortham, B. E. et al. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values. Earth Planet. Sci. Lett. 463, 310–322 (2017).

    CAS  Google Scholar 

  86. 86.

    Meggers, B. J. Environmental limitation on the development of culture. Am. Anthropol. 56, 801–824 (1954).

    Google Scholar 

  87. 87.

    Denevan, W. M. Pre-Spanish earthworks in the Llanos de Mojos of northeastern Bolivia. Rev. Geogr.áfica 33, 17–25 (1964).

    Google Scholar 

  88. 88.

    deMenocal, P. B. Cultural responses to climate change during the Late Holocene. Science 292, 667–673 (2001).

    CAS  PubMed  Google Scholar 

  89. 89.

    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of ancient Maya civilization. Nature 357, 391–394 (1995).

    Google Scholar 

  90. 90.

    Iriarte, J., DeBlasis, P., De Souza, J. G. & Corteletti, R. Emergent complexity, changing landscapes, and spheres of interaction in southeastern South America during the Middle and Late Holocene. J. Archaeol. Res. 25, 251–313 (2017).

    Google Scholar 

  91. 91.

    Håkansson, N. T. & Widgren, M. Landesque Capital: The Historical Ecology of Enduring Landscape Modifications (Left Coast Press, 2014).

  92. 92.

    Whitney, B. S. et al. Pre-Columbian raised-field agriculture and land use in the Bolivian Amazon. Holocene 24, 231–241 (2014).

    Google Scholar 

  93. 93.

    Rodrigues, L., Lombardo, U. & Veit, H. Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: differential adaptations to the local environment? J. Archaeol. Sci. Rep. 17, 366–378 (2018).

    Google Scholar 

  94. 94.

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    CAS  PubMed  Google Scholar 

  95. 95.

    Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).

    Google Scholar 

  96. 96.

    Sheehan, O., Watts, J., Gray, R. D. & Atkinson, Q. D. Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy. Proc. Natl Acad. Sci. USA 115, 3628–3633 (2018).

    PubMed  Google Scholar 

  97. 97.

    Earle, T.K. How Chiefs Come to Power: the Political Economy in Prehistory (Stanford University Press, 1997).

  98. 98.

    Turchin, P. et al. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proc. Natl Acad. Sci. USA 115, E144–E151 (2017).

    PubMed  Google Scholar 

  99. 99.

    Dark, K.R. Waves of Time: Long Term Change and International Relations (Continuum, 1998).

  100. 100.

    Johnson, N. Simply Complexity: a Clear Guide to Complexity Theory (OneWorld Publications, 2007).

  101. 101.

    Renfrew, C. in Transformations, Mathematical Approaches to Culture Change (eds Renfrew, C. & Cooke, K. L.) 481–506 (Academic Press, 1979).

  102. 102.

    Redman, C. L. & Kinzig, A. P. Resilience of past landscapes: resilience theory, society, and the longue durée. Conserv. Ecol. 7, 14 (2003).

    Google Scholar 

  103. 103.

    Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).

    Google Scholar 

  104. 104.

    Hegmon, M. et al. Social transformation and its human costs in the prehispanic U.S. Southwest. Am. Anthropol. 110, 313–324 (2008).

    Google Scholar 

  105. 105.

    Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

    CAS  PubMed  Google Scholar 

  106. 106.

    Gomes, D. C. Cronologia e Conexões Culturais na Amazônia: as Sociedades Formativas na Região de Santarém. Pa. Rev. Antropol. 54, 268–314 (2011).

    Google Scholar 

  107. 107.

    Quinn, E. Excavating “Tapajó” Ceramics at Santarém: Their Age and Archaeological Context PhD thesis, University of Illinois at Chicago (2004).

  108. 108.

    Woods, W. I. et al. Amazonian Dark Earths: Wim Sombroek’s Vision (Springer, 2009).

  109. 109.

    McMichael, C. H. et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. Lond. B 281, 20132475 (2014).

    CAS  Google Scholar 

  110. 110.

    Glaser, B. & Woods, W. I. Amazonian Dark Earths: Explorations in Space and Time (Springer, 2004).

  111. 111.

    Schmidt, M.J. & Heckenberger, M.J. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 163–191 (Springer, 2009).

  112. 112.

    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).

    CAS  Google Scholar 

  113. 113.

    Neves, E.G., Petersen, J.B., Bartone, R. & Augusto Da Silva, C. in Amazonian Dark Earths: Origins, Properties, Management (eds Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I.) 29–50 (Kluwer Academic Publisher, 2004).

  114. 114.

    Levis, C. et al. historical human footprint on modern tree species composition in the Purus-Madeira Interfluve, Central Amazonia. PLoS One 7, e48559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    PubMed  Google Scholar 

  116. 116.

    Kunen, J.L. Ancient Maya Life in the Far West Bajo: Social and Environmental Change in the Wetlands of Belize (The University of Arizona Press, 2004).

  117. 117.

    Rodrigues, L. et al. An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands. SOIL 2, 367–389 (2016).

    Google Scholar 

  118. 118.

    Balée, W.L. Footprints of the Forest: Ka’apor Ethnobotany — The Historical Ecology of Plant Utilization by an Amazonian People (Columbia University Press, 1994).

  119. 119.

    Arroyo-Kalin, M. The Amazonian formative: crop domestication and anthropogenic soils. Divers. (Basel) 2, 473–504 (2010).

    Google Scholar 

  120. 120.

    Woods, W.I., Denevan, W.M. & Rebellato, L. in Soils, Climate and Society: Archaeological Investigations in Ancient America (eds Wingard, J. D. & Hayes, S. E.) 1–20 (University Press of Colorado, 2013).

  121. 121.

    Kaniewski, D. et al. Environmental roots of the Late Bronze Age crisis. PLoS One 8, e71004 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Drake, B. L. The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages. J. Archaeol. Sci. 39, 1862–1870 (2012).

    Google Scholar 

  123. 123.

    Cline, E.H. 1177 BC: The Year Civilization Collapsed (Princeton University Press, 2015).

  124. 124.

    Dillehay, T. D. et al. Cultivated wetlands and emerging complexity in south-central Chile and long distance effects of climate change. Antiquity 81, 949–960 (2015).

    Google Scholar 

  125. 125.

    Dull, R. A. et al. The Columbian encounter and the Little Ice Age: abrupt land use change, fire, and greenhouse forcing. Ann. Assoc. Am. Geogr. 100, 755–771 (2010).

    Google Scholar 

  126. 126.

    Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. Neotropical human–landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011).

    Google Scholar 

  127. 127.

    Power, M. J. et al. Climatic control of the biomass-burning decline in the Americas after ad 1500. Holocene 23, 3–13 (2012).

    Google Scholar 

  128. 128.

    WinklerPrins, A. Locating Amazonian dark earths: creating an interactive GIS of known locations. J. Lat. Am. Geogr. 9, 33–50 (2010).

    Google Scholar 

  129. 129.

    IPHAN. National Register of Archaeological Sites (CNSA) (IPHAN, 2018);

Download references


This paper is the result of the 2016 international workshop “Land use and climate changes at the eve of conquest: an interdisciplinary approach”, part of the PAST project funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. ERC_Cog 616179). F.W.C. was supported by a São Paulo Research Foundation (FAPESP) grant: 2017/50085-3. V.F.N. was supported by a São Paulo Research Foundation (FAPESP) grant: 2016/15807-5. We thank the members of the PAGES sponsored Global Paleofire Working Group for their support for the global charcoal database.

Author information




J.I., J.G.d.S. and M.R. designed the research. J.G.d.S., M.R., J.C., J.A.H., U.L., D.T.A., S.R. and J.I. compiled and interpreted archaeological data. V.F.N., J.A. and F.W.d.C. compiled and interpreted palaeoclimatic data. S.Y.M. and M.J.P. compiled and interpreted palaeofire data. B.W., D.U., F.E.M. and H.H. compiled and interpreted palaeoecological data. J.G.d.S. led the writing of the paper, with inputs from all other authors.

Corresponding author

Correspondence to Jonas Gregorio de Souza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion 1 and 2, Supplementary Tables 1–7, Supplementary Figure 1, Supplementary Methods and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Souza, J.G., Robinson, M., Maezumi, S.Y. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat Ecol Evol 3, 1007–1017 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing