Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Palaeoproteomics resolves sloth relationships

This article has been updated

Abstract

The living tree sloths Choloepus and Bradypus are the only remaining members of Folivora, a major xenarthran radiation that occupied a wide range of habitats in many parts of the western hemisphere during the Cenozoic, including both continents and the West Indies. Ancient DNA evidence has played only a minor role in folivoran systematics, as most sloths lived in places not conducive to genomic preservation. Here we utilize collagen sequence information, both separately and in combination with published mitochondrial DNA evidence, to assess the relationships of tree sloths and their extinct relatives. Results from phylogenetic analysis of these datasets differ substantially from morphology-based concepts: Choloepus groups with Mylodontidae, not Megalonychidae; Bradypus and Megalonyx pair together as megatherioids, while monophyletic Antillean sloths may be sister to all other folivorans. Divergence estimates are consistent with fossil evidence for mid-Cenozoic presence of sloths in the West Indies and an early Miocene radiation in South America.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phylogenetic relationships among major folivoran taxa based on morphological evidence, with existence of unallocated taxa acknowledged.
Fig. 2: Geographical locations of sequenced samples.
Fig. 3: Fifty percent majority rule consensus tree from Bayesian analysis of the proteomic data without temporal information, as performed in MrBayes.
Fig. 4: Time-scaled maximum clade credibility tree from BEAST analysis of 24 extant and extinct xenarthran collagen sequences plus published mitochondrial genomes.

Data availability

Mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012859. Collagen sequences are available on the Uniprot website (https://www.uniprot.org/); the complete list can be found in Supplementary Table 5. Phylogenetic datasets have been deposited at DataDryad (https://doi.org/10.5061/dryad.7dd64gs).

Change history

  • 14 June 2019

    An old version of the Supplementary Information was originally uploaded. This has now been replaced with the correct version.

References

  1. Gardner, A. L. in Mammals of South America Vol. 1 (ed. Gardner, A. L.) 157–176 (Univ. of Chicago Press, 2007).

  2. Nowak, R. Walker’s Mammals of the World: Monotremes, Marsupials, Afrotherians, Xenarthrans, and Sundatherians (Johns Hopkins, 2018).

  3. Kraglievich, L. Descripción de dos cráneos y otros restos del género “Pliomorphus” Ameghino, procedentes de la formación entrerriana de las barrancas del río Paraná. Anal. Mus. Nac. Hist. Nat. Buenos Aires 33, 1–56 (1923).

    Google Scholar 

  4. Hoffstetter, R. in Traité de Paléontologie Vol. 6.2 (ed. Piveteau, J.) 535–636 (Masson, 1958).

  5. MacPhee, R. D. E. & Iturralde-Vinent, M. A. Origin of the greater antillean land mammal fauna 1: new Tertiary land mammals from Cuba and Puerto Rico. Am. Mus. Novit. 3141, 1–31 (1995).

    Google Scholar 

  6. Iturralde-Vinent, M. A. & MacPhee, R. D. E. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95 (1999).

    Google Scholar 

  7. White, J. & MacPhee, R. D. E. in Biogeography of the West Indies: Patterns and Perspectives 2nd edn (eds Woods, C. A. & Sergile, F. E.) 201–236 (CRC Press, 2001).

  8. Gaudin T. J. & McDonald, H. G. in The Biology of Xenarthra (eds Vizcaíno, S. F. & Loughry, W. J.) 24–36 (Univ. Press of Florida, 2008).

  9. Varela, L., Tambusso, P. S., McDonald, H. G. & Fariña, R. A. Phylogeny, macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis. Syst. Biol. 68, 204–218 (2018).

    Article  Google Scholar 

  10. Pujos, F., De Iuliis, G. & Cartelle, C. A paleogeographic overview of tropical forest sloths: towards an understanding of the origin of extant suspensory sloths? J. Mammal. Evol. 24, 19–38 (2017).

    Article  Google Scholar 

  11. Patterson, B. & Pascual, R. Evolution of mammals on southern continents. Q. Rev. Biol. 43, 409–451 (1968).

    Article  Google Scholar 

  12. Engelmann, G. F. in The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas (ed. Montgomery, G. G.) 195–203 (Smithsonian Institution, 1985).

  13. Webb, S. D. in The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas (ed. Montgomery, G. G.) 105–112 (Smithsonian Institution Press, 1985).

  14. White, J. Indicators of locomotor habits in xenarthrans: evidence of locomotor heterogeneity among fossil sloths. J. Vertebr. Paleontol. 13, 230–242 (1993).

    Article  Google Scholar 

  15. Delsuc, F., Catzeflis, F. M., Stanhope, M. J. & Douzery, E. J. P. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proc. R. Soc. B 268, 1605–1615 (2001).

    CAS  Article  Google Scholar 

  16. Gaudin, T. J. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool. J. Linn. Soc. 140, 255–305 (2004).

    Article  Google Scholar 

  17. McDonald, H. G. & De Iuliis, G. in The Biology of Xenarthra (eds Vizcaino, S. F. & Loughry, W. J.) 39–55 (Univ. Press of Florida, 2008).

  18. Pujos, F., Gaudin, T. J., De Iuliis, G. & Cartelle, C. Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. J. Mamm. Evol. 19, 159–169 (2012).

    Article  Google Scholar 

  19. Nyakatura, J. A. The convergent evolution of suspensory posture and locomotion in tree sloths. J. Mamm. Evol. 19, 225–234 (2012).

    Article  Google Scholar 

  20. Patterson, B., Turnbull, W. D., Segall, W. & Gaudin, T. J. The ear region in xenarthrans (= Edentata: Mammalia). Part II. Pilosa (sloths, anteaters), palaeanodonts, and a miscellany. Fieldiana Geol. 24, 1–79 (1992).

    Google Scholar 

  21. Pujos, F. Megatherium celendinense sp. nov. from the Pleistocene of Peruvian Andes and the Megatheriine phylogenetic relationship. Palaeontology 49, 285–306 (2006).

    Article  Google Scholar 

  22. Pujos, F., De Iuliis, G. & Mamani Quispe, B. Hiskatherium saintandrei, gen. et sp. nov.: an unusual sloth from the Santacrucian of Quebrada Honda (Bolivia) and an overview of middle Miocene, small megatherioids. J. Vert. Paleontol. 31, 1131–1149 (2011).

    Article  Google Scholar 

  23. McDonald, H. G., Rincón, A. D. & Gaudin, T. J. A new genus of megalonychid sloth (Mammalia, Xenarthra) from the late Pleistocene (lujanian) of Sierra de Perija, Zulia State, Venezuela. J. Vert. Paleontol. 33, 1226–1238 (2013).

    Article  Google Scholar 

  24. McDonald, H. G. & Carranza-Castaneda, O. Increased xenarthran diversity of the great American biotic interchange: a new genus and species of ground sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (late Miocene) of Jalisco, Mexico. J. Paleontol. 91, 1–14 (2017).

    Article  Google Scholar 

  25. Brandoni, D. A new genus of Megalonychidae (Mammalia, Xenarthra) from the late Miocene of Argentina. Rev. Bras. Paleontol. 17, 33–42 (2014).

    Article  Google Scholar 

  26. Brandoni, D. The Megalonychidae (Xenarthra, Tardigrada) from the late Miocene of Entre Ríos Province, Argentina, with remarks on their systematics and biogeography. Geobios 44, 33–44 (2011).

    Article  Google Scholar 

  27. De Iuliis, G., Gaudin, T. J. & Vicars, M. J. A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54, 171–205 (2011).

    Article  Google Scholar 

  28. Gaudin, T. J. & Croft, D. Paleogene Xenarthra and the evolution of South American mammals. J. Mamm. 96, 622–634 (2015).

    Article  Google Scholar 

  29. Rincón, A. D., Solórzano, A., McDonald, H. G. & Montellano-Ballesteros, M. Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (late Miocene), and their phylogenetic affinities. J. Syst. Palaeontol. 17, 409–421 (2019).

    Article  Google Scholar 

  30. Boscaini, A., Gaudin, T. J., Mamani Quispe, B., Antoine, P.-O. & Pujos, F. New well-preserved craniodental remains of Simomylodon uccasamamensis (Xenarthra, Mylodontidae) from the Pliocene of the Bolivian Altiplano: phylogenetic, chronostratigraphic and paleobiogeographic implications. Zool. J. Linn. Soc. 185, 459–486 (2019).

    Article  Google Scholar 

  31. McDonald, H. G. & De Iuliis, G. in The Biology of Xenarthra (eds Vizcaino, S. F. & Loughry, W. J.) 39–55 (Univ. Press of Florida, 2008).

  32. Delsuc, F. & Douzery, E. J. P. in The Biology of Xenarthra (eds Vizcaino, S. F. & Loughry, W. J.) 11–23 (Univ. Press of Florida, 2008).

  33. Slater, G. et al. Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biol. Evol. 8, 607–621 (2016).

    CAS  Article  Google Scholar 

  34. Delsuc, F. et al. Resolving the phylogenetic position of Darwin’s extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data. Proc. R. Soc. B 285, 20180214 (2018).

    Article  Google Scholar 

  35. Moraes-Barros, N., Silva, J. A. & Morgante, J. S. Morphology, molecular phylogeny, and taxonomic inconsistencies in the study of Bradypus sloths (Pilosa: Bradypodidae). J. Mammal. 92, 86–100 (2011).

    Article  Google Scholar 

  36. Poinar, H. N. et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998).

    CAS  Article  Google Scholar 

  37. Greenwood, A. D., Castresana, J., Feldmaier-Fuchs, G. & Pääbo, S. A molecular phylogeny of two extinct sloths. Mol. Phylogenet. Evol. 18, 94–103 (2001).

    CAS  Article  Google Scholar 

  38. McKenna, M. C. & Bell, S. K. Classification of Mammals above the Species Level (Columbia Univ. Press, 1997).

  39. Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl Acad. Sci. USA 93, 181–185 (1996).

    Article  Google Scholar 

  40. Hofreiter, M., Betancourt, J. L., Sbriller, A. P., Markgraf, V. & McDonald, H. G. Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo Cura, Neuquen Province, southwest Argentina. Quat. Res. 59, 364–378 (2003).

    CAS  Article  Google Scholar 

  41. Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct middle/late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).

    Article  Google Scholar 

  42. Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).

    CAS  Article  Google Scholar 

  43. Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

    CAS  Article  Google Scholar 

  44. Buckley, M. et al. Collagen sequence analysis of the extinct giant ground sloths Lestodon and Megatherium. PloS ONE 10, e0144793 (2015).

    Article  Google Scholar 

  45. Dobberstein, R. C. et al. Archaeological collagen: why worry about collagen diagenesis? Archaeol. Anthropol. Sci. 1, 31–42 (2009).

    Article  Google Scholar 

  46. Buckley, M. & Collins, M. J. Collagen survival and its use for species identification in Holocene-Lower Pleistocene bone fragments from British archaeological and palaeontological sites. Antiqua 1, e1 (2011).

    Article  Google Scholar 

  47. Buckley, M. & Wadsworth, C. Proteome degradation in ancient bone: diagenesis and phylogenetic potential. Palaeogeog. Palaeoclimatol. Palaeoecol. 416, 69–79 (2014).

    Article  Google Scholar 

  48. Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Comm. 4, 1550 (2013).

    Article  Google Scholar 

  49. Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279, 4724–4733 (2012).

    CAS  Article  Google Scholar 

  50. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature 499, 74–78 (2013).

    CAS  Article  Google Scholar 

  51. Presslee, S. et al. Radiocarbon dating and proteomic analysis of highly purified bone collagen derived from Rancho la Brea mammal fossils. Society of Vertebrate Paleontology Annual Meeting Program 208 (2016).

  52. Tuross, N. & Stathoplos, L. in Methods in Enzymology Vol. 224 (eds Zimmer A., White, T. J., Cann, R. L. & Wilson, A. C.) 121–129 (Academic Press, 1993).

  53. Westbury, M. et al. A mitogenomic timetree for Darwin’s enigmatic “transitional” South American mammal, Macrauchenia Patachonica. Nat. Commun. 8, 15951 (2017).

    CAS  Article  Google Scholar 

  54. Hautier, L., Gomes Rodrigues, H., Billet, G. & Asher, R. J. The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. Sci. Rep. 6, 27763 (2016).

    CAS  Article  Google Scholar 

  55. Cione, A. L. & Tonni, E. P. in Quaternary of South America Antarctic Península (eds Tonni, E. P. & Cione, A. L.) 23–51 (Balkema,1999).

  56. Cartelle, C., De Iuliis, G. & Ferreira, R. L. Systematic revision of tropical Brazilian scelidotheriines sloths (Xenarthra, Mylodontoidea). J. Vertebr. Paleontol. 29, 555–566 (2009).

    Article  Google Scholar 

  57. Guth, C. La Région Temporale des Edentés (Imprimerie Jeanne d’Arc Le Puy, 1961).

  58. Guilherme, E., Bocquentin, J. & Porto, A. S. A new specimen of the genus Octodontobradys (Orophodontidae, Octodontobradyinae) from the late Miocene-Pliocene of the southwestern Amazon Basin, Brazil. Anu. ár. Inst. Geociências 34, 64–71 (2011).

    Google Scholar 

  59. Varona, L. Catálogo de los Mamíferos Vivientes y Extinguidos de las Antillas (Academia de Ciencias de Cuba, 1974).

  60. Webb, S. D. & Perrigo, S. in The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas (ed. Montgomery, G. G.) 113–120 (Smithsonian Institution Press, 1985).

  61. MacPhee, R. D. E., Iturralde-Vinent, M. A. & Gaffney, E. S. Domo de Zaza: an early Miocene vertebrate locality in south-central Cuba, with notes on the tectonic evolution of Puerto Rico and Mona Passage. Am. Mus. Novit. 3394, 1–42 (2003).

    Article  Google Scholar 

  62. Tong, Y. F. et al. Huntsmen of the Caribbean: multiple tests of the GAARlandia hypothesis. Mol. Phylogenet. Evol. 130, 259–268 (2019).

    Article  Google Scholar 

  63. Steadman, D. W. et al. Asynchronous extinction of late Quaternary sloths on continents and islands. Proc. Natl Acad. Sci. USA 102, 11763–11768 (2005).

    CAS  Article  Google Scholar 

  64. Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    CAS  Article  Google Scholar 

  65. Tejada-Lara, J. V. et al. Life in proto-Amazonia: Middle Miocene mammals from the Fitzcarrald Arch (Peruvian Amazonia). Palaeontology 58, 341–378 (2015).

    Article  Google Scholar 

  66. Delsuc, F. et al. Ancient mitogenomics rewrites the evolutionary history and biogeography of sloths. Curr. Biol. https://doi.org/10.1016/j.cub.2019.05.043 (2019).

    Article  Google Scholar 

  67. Penkman, K., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).

    CAS  Article  Google Scholar 

  68. Kaufman, D. S. & Manley, W. F. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quat. Sci. Rev. 17, 987–1000 (1998).

    Article  Google Scholar 

  69. Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 5, e17092 (2016).

    Article  Google Scholar 

  70. Kontopoulos, I., Presslee, S., Penkman, K. & Collins, M. J. Preparation of bone powder for FTIR-ATR analysis: the particle size effect. Vib. Spectrosc. 99, 167–177 (2018).

    CAS  Article  Google Scholar 

  71. Van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281–289 (2011).

    Article  Google Scholar 

  72. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    CAS  Article  Google Scholar 

  73. Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  Google Scholar 

  74. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  75. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4 (Sinauer Associates, 2002).

  76. Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  Article  Google Scholar 

  77. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  78. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, 1978).

  79. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

  80. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  81. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA. 111, 2957–2966 (2014).

    Article  Google Scholar 

  82. Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).

    Article  Google Scholar 

  83. Gavryushkina, A. et al. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66, 57–73 (2017).

    PubMed  Google Scholar 

  84. Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  Google Scholar 

  85. De Iuliis, G., Pujos, F., Toledo, N., Bargo, M. S. & Vizcaíno, S. F. Eucholoeops ameghino, 1887 (Xenarthra, Tardigrada, Megalonychidae) from the Santa Cruz Formation, Argentine Patagonia: implications for the systematics of santacrucian sloths. Geodiversitas 36, 209–255 (2014).

    Article  Google Scholar 

  86. Hirschfeld, S. E. & Webb, S. D. Plio-Pleistocene megalonychid sloths of North America. Bull. Fla. Mus. Nat. Hist. 12, 213–294 (1968).

    Google Scholar 

Download references

Acknowledgements

We thank the curatorial staffs of the following museums and private collections for permission to sample specimens in their care: AMNH-M, American Museum of Natural History (Mammalogy), New York, USA; AMNH-P, American Museum of Natural History (Paleontology), New York, USA; CIV, Iota Quatro faunal collection, courtesy of Lazaro Vinola; El Trebol faunal collection, Bariloche, Argentina; FR, Forest Reserve (Trinidad) faunal collection currently housed in Department of Mammalogy, AMNH, New York, USA; IANIGLA-PV, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET-Mendoza, Mendoza, Argentina; MACN-PV, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (Sección Paleovertebrados), Buenos Aires, Argentina; MAPBAR, Museo de la Asociación Paleontológica Bariloche (APB), prov. Río Negro, Argentina; MMP, Museo Municipal de Ciencias Naturales ‘Lorenzo Scaglia’ Mar del Plata, prov. Buenos Aires, Argentina; MNHN SAO, Muséum national d’Histoire naturelle, Paris, France; MPS, Museo Paleontológico ‘Fray Manuel de Torres’, San Pedro, prov. Buenos Aires, Argentina; MUSM, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru; NYSM VP, New York State Museum (Vertebrate Paleontology), Albany, USA; RM, Cuban faunal collection currently housed in Department of Mammalogy, AMNH, New York, USA; UF, University of Florida, Natural History Museum of Florida (Vertebrate Paleontology), Gainesville, USA; UMAG ah, Instituto de La Patagonia, Universidad de Magallanes, Punta Arenas, Chile; USNM, United States National Museum of Natural History (Paleobiology), Washington DC, USA. Samples of specimens housed in Argentinian collections were sampled before 2009. S.P. would like to thank B. Demarchi for useful discussion and support. The authors thank the National Science Foundation for grants (No. OPP 0636639 to R.D.E.M. and No. DEB 1547414 to R.D.E.M., M.C. and K.P.).

Author information

Authors and Affiliations

Authors

Contributions

R.D.E.M., M.C. and S.P. conceived the project. S.P. undertook AAR, proteomic analysis and concatenated collagen sequences, with laboratory and technical assistance from R.F., J.V.O., K.M., M.M., M.C., K.P. and B.T.C. G.J.S. conducted phylogenetic analyses. F.P. and A.M.F. supplied palaeontological information. A.K., M.T., F.S., M.L., A.H., R.F., J.B., J.L.L., F.M.M., R.S.G., M.R., A.G., C.d.M. and J.S. supplied fossil samples, locality information, dating, species identifications and commentary on the manuscript. R.D.E.M., S.P. and G.J.S. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Ross D. E. MacPhee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary analyses, Supplementary References, Supplementary Figs. 1–6 and legends for Supplementary Tables 1–5

Reporting Summary

Supplementary Table 1

Information on all samples investigated for this study

Supplementary Table 2

Radiocarbon dates for specimens successfully screened for MS/MS

Supplementary Table 3

Marginal Likelihoods estimated for three clock models for proteomic data alone and proteomic + genomic data using the path sampling algorithm in BEAST 2.5.1

Supplementary Table 4

Detected amino acid differences between Megatherium sequence reported in ref. 15 (denoted by B) and the sequence concatenated in this study (TS)

Supplementary Table 5

Accession numbers of collagen sequences used in this study

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Presslee, S., Slater, G.J., Pujos, F. et al. Palaeoproteomics resolves sloth relationships. Nat Ecol Evol 3, 1121–1130 (2019). https://doi.org/10.1038/s41559-019-0909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0909-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing